3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent advances in centrifugal microfluidic chip-based loop-mediated isothermal amplification

      , , , , ,
      TrAC Trends in Analytical Chemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references175

          • Record: found
          • Abstract: found
          • Article: not found

          Printing soft matter in three dimensions.

          Light- and ink-based three-dimensional (3D) printing methods allow the rapid design and fabrication of materials without the need for expensive tooling, dies or lithographic masks. They have led to an era of manufacturing in which computers can control the fabrication of soft matter that has tunable mechanical, electrical and other functional properties. The expanding range of printable materials, coupled with the ability to programmably control their composition and architecture across various length scales, is driving innovation in myriad applications. This is illustrated by examples of biologically inspired composites, shape-morphing systems, soft sensors and robotics that only additive manufacturing can produce.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue.

            Loop-mediated isothermal amplification (LAMP), a novel gene amplification method, enables the synthesis of larger amounts of both DNA and a visible byproduct--namely, magnesium pyrophosphate--without thermal cycling. A positive reaction is indicated by the turbidity of the reaction solution or the color change after adding an intercalating dye to the reaction solution, but the use of such dyes has certain limitations. Hydroxy naphthol blue (HNB), a metal indicator for calcium and a colorimetric reagent for alkaline earth metal ions, was used for a new colorimetric assay of the LAMP reaction. Preaddition of 120 microM HNB to the LAMP reaction solution did not inhibit amplification efficiency. A positive reaction is indicated by a color change from violet to sky blue. The LAMP reaction with HNB could also be carried out in a 96-well microplate, and the reaction could be measured at 650 nm with a microplate reader. The colorimetric LAMP method using HNB would be helpful for high-throughput DNA and RNA detection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples

              A colorimetric isothermal RNA amplification method was shown to detect SARS-CoV-2 RNA in clinical samples with excellent sensitivity and specificity.
                Bookmark

                Author and article information

                Journal
                TrAC Trends in Analytical Chemistry
                TrAC Trends in Analytical Chemistry
                Elsevier BV
                01659936
                January 2023
                January 2023
                : 158
                : 116836
                Article
                10.1016/j.trac.2022.116836
                30207302-5737-4d22-ab62-1ee1bc998f74
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article