8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Managing competing goals — a key role for the frontopolar cortex

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Humans are set apart from other animals by many elements of advanced cognition and behaviour, including language, judgement and reasoning. What is special about the human brain that gives rise to these abilities? Could the foremost part of the prefrontal cortex (the frontopolar cortex), which has become considerably enlarged in humans during evolution compared with other animals, be important in this regard, especially as, in primates, it contains a unique cytoarchitectural field, area 10? The first studies of the function of the frontopolar cortex in monkeys have now provided critical new insights about its precise role in monitoring the significance of current and alternative goals. In human evolution, the frontopolar cortex may have acquired a further role in enabling the monitoring of the significance of multiple goals in parallel, as well as switching between them. Here, we argue that many other forms of uniquely human behaviour may benefit from this cognitive ability mediated by the frontopolar cortex.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Architectonic subdivision of the human orbital and medial prefrontal cortex.

          The structure of the human orbital and medial prefrontal cortex (OMPFC) was investigated using five histological and immunohistochemical stains and was correlated with a previous analysis in macaque monkeys [Carmichael and Price (1994) J. Comp. Neurol. 346:366-402]. A cortical area was recognized if it was distinct with at least two stains and was found in similar locations in different brains. All of the areas recognized in the macaque OMPFC have counterparts in humans. Areas 11, 13, and 14 were subdivided into areas 11m, 11l, 13a, 13b, 13m, 13l, 14r, and 14c. Within area 10, the region corresponding to area 10m in monkeys was divided into 10m and 10r, and area 10o (orbital) was renamed area 10p (polar). Areas 47/12r, 47/12m, 47/12l, and 47/12s occupy the lateral orbital cortex, corresponding to monkey areas 12r, 12m, 12l, and 12o. The agranular insula (areas Iam, Iapm, Iai, and Ial) extends onto the caudal orbital surface and into the horizontal ramus of the lateral sulcus. The growth of the frontal pole in humans has pushed area 25 and area 32pl, which corresponds to the prelimbic area 32 in Brodmann's monkey brain map, caudal and ventral to the genu of the corpus callosum. Anterior cingulate areas 24a and 24b also extend ventral to the genu of the corpus callosum. Area 32ac, corresponding to the dorsal anterior cingulate area 32 in Brodmann's human brain map, is anterior and dorsal to the genu. The parallel organization of the OMPFC in monkeys and humans allows experimental data from monkeys to be applied to studies of the human cortex. Copyright 2003 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Single neurons in prefrontal cortex encode abstract rules.

            The ability to abstract principles or rules from direct experience allows behaviour to extend beyond specific circumstances to general situations. For example, we learn the 'rules' for restaurant dining from specific experiences and can then apply them in new restaurants. The use of such rules is thought to depend on the prefrontal cortex (PFC) because its damage often results in difficulty in following rules. Here we explore its neural basis by recording from single neurons in the PFC of monkeys trained to use two abstract rules. They were required to indicate whether two successively presented pictures were the same or different depending on which rule was currently in effect. The monkeys performed this task with new pictures, thus showing that they had learned two general principles that could be applied to stimuli that they had not yet experienced. The most prevalent neuronal activity observed in the PFC reflected the coding of these abstract rules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis.

              One of the least well understood regions of the human brain is rostral prefrontal cortex, approximating Brodmann's area 10. Here, we investigate the possibility that there are functional subdivisions within this region by conducting a meta-analysis of 104 functional neuroimaging studies (using positron emission tomography/functional magnetic resonance imaging). Studies involving working memory and episodic memory retrieval were disproportionately associated with lateral activations, whereas studies involving mentalizing (i.e., attending to one's own emotions and mental states or those of other agents) were disproportionately associated with medial activations. Functional variation was also observed along a rostral-caudal axis, with studies involving mentalizing yielding relatively caudal activations and studies involving multiple-task coordination yielding relatively rostral activations. A classification algorithm was trained to predict the task, given the coordinates of each activation peak. Performance was well above chance levels (74% for the three most common tasks; 45% across all eight tasks investigated) and generalized to data not included in the training set. These results point to considerable functional segregation within rostral prefrontal cortex.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Neuroscience
                Nat Rev Neurosci
                Springer Science and Business Media LLC
                1471-003X
                1471-0048
                November 2017
                September 29 2017
                November 2017
                : 18
                : 11
                : 645-657
                Article
                10.1038/nrn.2017.111
                28951610
                2ea6857a-66ca-460e-ba3d-41b68b4513c7
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article