20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cataloguing experimentally confirmed 80.7 kb-long ACKR1 haplotypes from the 1000 Genomes Project database

      research-article
      , , ,
      BMC Bioinformatics
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Clinically effective and safe genotyping relies on correct reference sequences, often represented by haplotypes. The 1000 Genomes Project recorded individual genotypes across 26 different populations and, using computerized genotype phasing, reported haplotype data. In contrast, we identified long reference sequences by analyzing the homozygous genomic regions in this online database, a concept that has rarely been reported since next generation sequencing data became available.

          Study design and methods

          Phased genotype data for a 80.6 kb region of chromosome 1 was downloaded for all 2,504 unrelated individuals of the 1000 Genome Project Phase 3 cohort. The data was centered on the ACKR1 gene and bordered by the CADM3 and FCER1A genes. Individuals with heterozygosity at a single site or with complete homozygosity allowed unambiguous assignment of an ACKR1 haplotype. A computer algorithm was developed for extracting these haplotypes from the 1000 Genome Project in an automated fashion. A manual analysis validated the data extracted by the algorithm.

          Results

          We confirmed 902 ACKR1 haplotypes of varying lengths, the longest at 80,584 nucleotides and shortest at 1,901 nucleotides. The combined length of haplotype sequences comprised 19,895,388 nucleotides with a median of 16,014 nucleotides. Based on our approach, all haplotypes can be considered experimentally confirmed and not affected by the known errors of computerized genotype phasing.

          Conclusions

          Tracts of homozygosity can provide definitive reference sequences for any gene. They are particularly useful when observed in unrelated individuals of large scale sequence databases. As a proof of principle, we explored the 1000 Genomes Project database for ACKR1 gene data and mined long haplotypes. These haplotypes are useful for high throughput analysis with next generation sequencing. Our approach is scalable, using automated bioinformatics tools, and can be applied to any gene.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12859-021-04169-6.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Integrative Genomics Viewer

          To the Editor Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole genome sequencing, epigenetic surveys, expression profiling of coding and non-coding RNAs, SNP and copy number profiling, and functional assays. Analysis of these large, diverse datasets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large datasets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data poses a significant challenge to the development of such tools. To address this challenge we developed the Integrative Genomics Viewer (IGV), a lightweight visualization tool that enables intuitive real-time exploration of diverse, large-scale genomic datasets on standard desktop computers. It supports flexible integration of a wide range of genomic data types including aligned sequence reads, mutations, copy number, RNAi screens, gene expression, methylation, and genomic annotations (Figure S1). The IGV makes use of efficient, multi-resolution file formats to enable real-time exploration of arbitrarily large datasets over all resolution scales, while consuming minimal resources on the client computer (see Supplementary Text). Navigation through a dataset is similar to Google Maps, allowing the user to zoom and pan seamlessly across the genome at any level of detail from whole-genome to base pair (Figure S2). Datasets can be loaded from local or remote sources, including cloud-based resources, enabling investigators to view their own genomic datasets alongside publicly available data from, for example, The Cancer Genome Atlas (TCGA) 1 , 1000 Genomes (www.1000genomes.org/), and ENCODE 2 (www.genome.gov/10005107) projects. In addition, IGV allows collaborators to load and share data locally or remotely over the Web. IGV supports concurrent visualization of diverse data types across hundreds, and up to thousands of samples, and correlation of these integrated datasets with clinical and phenotypic variables. A researcher can define arbitrary sample annotations and associate them with data tracks using a simple tab-delimited file format (see Supplementary Text). These might include, for example, sample identifier (used to link different types of data for the same patient or tissue sample), phenotype, outcome, cluster membership, or any other clinical or experimental label. Annotations are displayed as a heatmap but more importantly are used for grouping, sorting, filtering, and overlaying diverse data types to yield a comprehensive picture of the integrated dataset. This is illustrated in Figure 1, a view of copy number, expression, mutation, and clinical data from 202 glioblastoma samples from the TCGA project in a 3 kb region around the EGFR locus 1, 3 . The investigator first grouped samples by tumor subtype, then by data type (copy number and expression), and finally sorted them by median copy number over the EGFR locus. A shared sample identifier links the copy number and expression tracks, maintaining their relative sort order within the subtypes. Mutation data is overlaid on corresponding copy number and expression tracks, based on shared participant identifier annotations. Several trends in the data stand out, such as a strong correlation between copy number and expression and an overrepresentation of EGFR amplified samples in the Classical subtype. IGV’s scalable architecture makes it well suited for genome-wide exploration of next-generation sequencing (NGS) datasets, including both basic aligned read data as well as derived results, such as read coverage. NGS datasets can approach terabytes in size, so careful management of data is necessary to conserve compute resources and to prevent information overload. IGV varies the displayed level of detail according to resolution scale. At very wide views, such as the whole genome, IGV represents NGS data by a simple coverage plot. Coverage data is often useful for assessing overall quality and diagnosing technical issues in sequencing runs (Figure S3), as well as analysis of ChIP-Seq 4 and RNA-Seq 5 experiments (Figures S4 and S5). As the user zooms below the ~50 kb range, individual aligned reads become visible (Figure 2) and putative SNPs are highlighted as allele counts in the coverage plot. Alignment details for each read are available in popup windows (Figures S6 and S7). Zooming further, individual base mismatches become visible, highlighted by color and intensity according to base call and quality. At this level, the investigator may sort reads by base, quality, strand, sample and other attributes to assess the evidence of a variant. This type of visual inspection can be an efficient and powerful tool for variant call validation, eliminating many false positives and aiding in confirmation of true findings (Figures S6 and S7). Many sequencing protocols produce reads from both ends (“paired ends”) of genomic fragments of known size distribution. IGV uses this information to color-code paired ends if their insert sizes are larger than expected, fall on different chromosomes, or have unexpected pair orientations. Such pairs, when consistent across multiple reads, can be indicative of a genomic rearrangement. When coloring aberrant paired ends, each chromosome is assigned a unique color, so that intra- (same color) and inter- (different color) chromosomal events are readily distinguished (Figures 2 and S8). We note that misalignments, particularly in repeat regions, can also yield unexpected insert sizes, and can be diagnosed with the IGV (Figure S9). There are a number of stand-alone, desktop genome browsers available today 6 including Artemis 7 , EagleView 8 , MapView 9 , Tablet 10 , Savant 11 , Apollo 12 , and the Integrated Genome Browser 13 . Many of them have features that overlap with IGV, particularly for NGS sequence alignment and genome annotation viewing. The Integrated Genome Browser also supports viewing array-based data. See Supplementary Table 1 and Supplementary Text for more detail. IGV focuses on the emerging integrative nature of genomic studies, placing equal emphasis on array-based platforms, such as expression and copy-number arrays, next-generation sequencing, as well as clinical and other sample metadata. Indeed, an important and unique feature of IGV is the ability to view all these different data types together and to use the sample metadata to dynamically group, sort, and filter datasets (Figure 1 above). Another important characteristic of IGV is fast data loading and real-time pan and zoom – at all scales of genome resolution and all dataset sizes, including datasets comprising hundreds of samples. Finally, we have placed great emphasis on the ease of installation and use of IGV, with the goal of making both the viewing and sharing of their data accessible to non-informatics end users. IGV is open source software and freely available at http://www.broadinstitute.org/igv/, including full documentation on use of the software. Supplementary Material 1
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data.

            Heng Li (2011)
            Most existing methods for DNA sequence analysis rely on accurate sequences or genotypes. However, in applications of the next-generation sequencing (NGS), accurate genotypes may not be easily obtained (e.g. multi-sample low-coverage sequencing or somatic mutation discovery). These applications press for the development of new methods for analyzing sequence data with uncertainty. We present a statistical framework for calling SNPs, discovering somatic mutations, inferring population genetical parameters and performing association tests directly based on sequencing data without explicit genotyping or linkage-based imputation. On real data, we demonstrate that our method achieves comparable accuracy to alternative methods for estimating site allele count, for inferring allele frequency spectrum and for association mapping. We also highlight the necessity of using symmetric datasets for finding somatic mutations and confirm that for discovering rare events, mismapping is frequently the leading source of errors. http://samtools.sourceforge.net. hengli@broadinstitute.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              dbSNP: the NCBI database of genetic variation.

              S Sherry (2001)
              In response to a need for a general catalog of genome variation to address the large-scale sampling designs required by association studies, gene mapping and evolutionary biology, the National Center for Biotechnology Information (NCBI) has established the dbSNP database [S.T.Sherry, M.Ward and K. Sirotkin (1999) Genome Res., 9, 677-679]. Submissions to dbSNP will be integrated with other sources of information at NCBI such as GenBank, PubMed, LocusLink and the Human Genome Project data. The complete contents of dbSNP are available to the public at website: http://www.ncbi.nlm.nih.gov/SNP. The complete contents of dbSNP can also be downloaded in multiple formats via anonymous FTP at ftp://ncbi.nlm.nih.gov/snp/.
                Bookmark

                Author and article information

                Contributors
                waf@nih.gov
                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central (London )
                1471-2105
                26 May 2021
                26 May 2021
                2021
                : 22
                : 273
                Affiliations
                GRID grid.410305.3, ISNI 0000 0001 2194 5650, Laboratory Services Section, Department of Transfusion Medicine, , NIH Clinical Center, National Institutes of Health, ; Bethesda, MD 20892 USA
                Article
                4169
                10.1186/s12859-021-04169-6
                8150616
                34039276
                2e540679-2b4f-4eae-9a39-97a305d1e1bb
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 18 November 2020
                : 4 May 2021
                Funding
                Funded by: National Institutes of Health (NIH)
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article