18
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      In silico screening of potent bioactive compounds from honeybee products against COVID-19 target enzymes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          After the early advent of the Coronavirus Disease 2019 (COVID-19) pandemic, myriads of FDA-approved drugs have been massively repurposed for COVID-19 treatment based on molecular docking against selected protein targets that play fundamental roles in the replication cycle of the novel coronavirus. Honeybee products are well known of their nutritional values and medicinal effects. Bee products contain bioactive compounds in the form of a collection of phenolic acids, flavonoids, and terpenes of natural origin that display wide spectrum antiviral effects. We revealed by molecular docking the profound binding affinity of 14 selected phenolics and terpenes present in honey and propolis (bees glue) against the main protease (M pro) and RNA-dependent RNA polymerase (RdRp) enzymes of the novel SARS-CoV-2 virus (the causative agent of COVID-19) using AutoDock Vina software. Of these compounds, p-coumaric acid, ellagic acid, kaempferol, and quercetin have the strongest interaction with the SARS-CoV-2 target enzymes, and it may be considered an effective COVID-19 inhibitor.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          A Novel Coronavirus from Patients with Pneumonia in China, 2019

          Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A pneumonia outbreak associated with a new coronavirus of probable bat origin

            Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.

              AutoDock Vina, a new program for molecular docking and virtual screening, is presented. AutoDock Vina achieves an approximately two orders of magnitude speed-up compared with the molecular docking software previously developed in our lab (AutoDock 4), while also significantly improving the accuracy of the binding mode predictions, judging by our tests on the training set used in AutoDock 4 development. Further speed-up is achieved from parallelism, by using multithreading on multicore machines. AutoDock Vina automatically calculates the grid maps and clusters the results in a way transparent to the user. Copyright 2009 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Contributors
                yehia.elnagar@science.tanta.edu.eg
                Journal
                Environ Sci Pollut Res Int
                Environ Sci Pollut Res Int
                Environmental Science and Pollution Research International
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0944-1344
                1614-7499
                2 May 2021
                : 1-8
                Affiliations
                [1 ]Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafr EL Sheikh University, Kafr El Sheikh, 33516 Egypt
                [2 ]Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Al Sharqia, 44519 Egypt
                [3 ]Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
                [4 ]Hospitals of Zagazig University, Al Sharqia, Egypt
                [5 ]Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
                [6 ]Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522 Egypt
                [7 ]Zoology Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
                [8 ]General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher weg 8, 06120 Halle (Saale), Germany
                Author notes

                Responsible Editor: Philippe Garrigues

                Author information
                http://orcid.org/0000-0002-8111-918X
                Article
                14195
                10.1007/s11356-021-14195-9
                8088405
                33934306
                2cf14c53-1a4b-4c7f-89b5-a7ca0c6bcb73
                © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 14 June 2020
                : 27 April 2021
                Categories
                Environmental Factors and the Epidemics of COVID-19

                General environmental science
                covid-19,honeybee products,phenolic compounds,molecular docking,drug repurposing,natural products

                Comments

                Comment on this article