7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel diaminoguanidine functionalized cellulose: synthesis, characterization, adsorption characteristics and application for ICP-AES determination of copper(II), mercury(II), lead(II) and cadmium(II) from aqueous solutions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, the novel adsorbent diaminoguanidine-modified cellulose (DiGu.MC) was synthesized to extract mercury, copper, lead and cadmium ions from aqueous solutions and environmental water samples. The synthetic strategy involved oxidizing cellulose powder into dialdehyde cellulose (DAC) and reacting DAC with diaminoguanidine to create an imine linkage between the two reactants to form diaminoguanidine-modified cellulose (DiGu.MC). The structure and morphology of the adsorbent were studied using a variety of analytical techniques including Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) surface area measurements. Adsorption of mercury, copper, lead, and cadmium ions was optimized by examining the effects of pH, initial concentration, contact time, dose, temperature and competing ions. Under optimal adsorption conditions, the adsorption capacities of Cu 2+, Hg 2+, Pb 2+, and Cd 2+ were 66, 55, 70 and 41 mg g −1, respectively. The adsorption isotherm is in very good agreement with the Langmuir isotherm model, indicating that a monomolecular layer is formed on the surface of DiGu.MC. The kinetics of adsorption are in good agreement with the pseudo-second kinetics model that proposes the chemical adsorption of metal ions via the nitrogen functional groups of the adsorbent. Thermodynamic studies have confirmed that the adsorption of heavy metals by DiGu.MC is exothermic and spontaneous. Regeneration studies have shown that the adsorbent can be recycled multiple times by removing metal ions with 0.2 M nitric acid. The removal efficiency for regeneration was over 99%. DiGu.MC is introduced as a unique adsorbent in removing mercury, copper, lead and cadmium with a simple synthetic strategy, with cheap starting materials, a unique chemical structure and fast adsorption kinetics leading to excellent removal efficiency and excellent regeneration. The mechanism of adsorption of the investigated heavy metals, is probably based on the chelation between the metal ions and the N donors of DiCu.MC.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13065-022-00857-3.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: not found
          • Article: not found

          Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heavy metal removal from water/wastewater by nanosized metal oxides: a review.

            Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs' preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance. Copyright © 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters

                Bookmark

                Author and article information

                Contributors
                magdaakl@yahoo.com
                Journal
                BMC Chem
                BMC Chem
                BMC Chemistry
                Springer International Publishing (Cham )
                2661-801X
                30 August 2022
                30 August 2022
                December 2022
                : 16
                : 1
                : 65
                Affiliations
                GRID grid.10251.37, ISNI 0000000103426662, Department of Chemistry, Faculty of Science, , Mansoura University, ; Mansoura, 35516 Egypt
                Article
                857
                10.1186/s13065-022-00857-3
                9426243
                35027086
                2c9ee545-21da-4598-b58b-61bc535252e8
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 9 July 2022
                : 22 August 2022
                Funding
                Funded by: Mansoura University
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                cellulose,diaminoguanidine,adsorption,heavy metals,icp-aes
                cellulose, diaminoguanidine, adsorption, heavy metals, icp-aes

                Comments

                Comment on this article