3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Albumin-coated copper nanoparticles for photothermal cancer therapy: Synthesis and in vitro characterization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Copper nanoparticles (CuNPs) have attracted great interest in various biomedical research fields due to their superior optical and plasmonic properties. In the present study, we synthesized bovine serum albumin (BSA)-coated CuNPs (BSA-CuNPs) by adopting the aqueous reduction method in 2-step procedures. The prepared BSA-CuNPs were characterized in vitro for their physical characteristics and photothermal activity. The successful synthesis of BSA-CuNPs was verified through transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), dynamic light scattering (DLS), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and ultraviolet–visible (UV-VIS) light spectroscopy. The prepared BSA-CuNPs revealed a great light-to-heat conversion capacity and good photothermal stability. Notably, accompanied by laser irradiation, the BSA-CuNPs elicited significantly higher cytotoxicity on tumor cells than the control group. Preliminary animal studies to determine the biosafety and pharmacokinetics (PK) profiles exhibited that the BSA-CuNPs have a maximum tolerable dose (MTD) of 16 mgCu/kg and a relatively long plasma half-life of 1.98 h. Overall, our findings demonstrated that BSA-CuNPs might be a potential photothermal therapeutic agent for cancer treatment.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis.

          The applications of copper (Cu) and Cu-based nanoparticles, which are based on the earth-abundant and inexpensive copper metal, have generated a great deal of interest in recent years, especially in the field of catalysis. The possible modification of the chemical and physical properties of these nanoparticles using different synthetic strategies and conditions and/or via postsynthetic chemical treatments has been largely responsible for the rapid growth of interest in these nanomaterials and their applications in catalysis. In addition, the design and development of novel support and/or multimetallic systems (e.g., alloys, etc.) has also made significant contributions to the field. In this comprehensive review, we report different synthetic approaches to Cu and Cu-based nanoparticles (metallic copper, copper oxides, and hybrid copper nanostructures) and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis. The synthesis part discusses numerous preparative protocols for Cu and Cu-based nanoparticles, whereas the application sections describe their utility as catalysts, including electrocatalysis, photocatalysis, and gas-phase catalysis. We believe this critical appraisal will provide necessary background information to further advance the applications of Cu-based nanostructured materials in catalysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Plasmonic Photothermal Nanoparticles for Biomedical Applications

            Abstract Recent advances of plasmonic nanoparticles include fascinating developments in the fields of energy, catalyst chemistry, optics, biotechnology, and medicine. The plasmonic photothermal properties of metallic nanoparticles are of enormous interest in biomedical fields because of their strong and tunable optical response and the capability to manipulate the photothermal effect by an external light source. To date, most biomedical applications using photothermal nanoparticles have focused on photothermal therapy; however, to fully realize the potential of these particles for clinical and other applications, the fundamental properties of photothermal nanoparticles need to be better understood and controlled, and the photothermal effect‐based diagnosis, treatment, and theranostics should be thoroughly explored. This Progress Report summarizes recent advances in the understanding and applications of plasmonic photothermal nanoparticles, particularly for sensing, imaging, therapy, and drug delivery, and discusses the future directions of these fields.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent advances in metal nanoparticles in cancer therapy

              Metal nanoparticles (NPs) may have the potential to overcome problems related to conventional chemotherapy. Metal NPs reported to play a beneficial and powerful role in cancer therapy providing better targeting, gene silencing and drug delivery. Functionalised metal NPs with targeting ligands offer a better control of energy deposition in the tumours. Apart from therapeutic benefits, metal NPs are also used as a diagnostic tool for the imaging of cancer cells. Metal NP-based therapeutic systems not only provide simultaneous diagnostic and therapy but also allow controlled and targeted drug release which helps to revolutionise cancer treatment and management. This review addresses the advancement of metal NPs in tumour therapy with a focus on those being explained into clinical settings.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                27 June 2023
                July 2023
                27 June 2023
                : 9
                : 7
                : e17732
                Affiliations
                [a ]College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea
                [b ]College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea
                Author notes
                []Corresponding author. shinmc@ 123456gnu.ac.kr
                [∗∗ ]Corresponding author. minkahh@ 123456inje.ac.kr
                Article
                S2405-8440(23)04940-X e17732
                10.1016/j.heliyon.2023.e17732
                10336593
                37449093
                2b971fe2-a1c8-45db-ad04-642ec71c5fe7
                © 2023 The Authors. Published by Elsevier Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 24 March 2023
                : 10 June 2023
                : 27 June 2023
                Categories
                Research Article

                albumin,copper,nanoparticle,cancer,photothermal therapy
                albumin, copper, nanoparticle, cancer, photothermal therapy

                Comments

                Comment on this article