30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer microenvironment is critical for tumorigenesis and cancer progression. The extracellular matrix (ECM) interacts with tumor and stromal cells to promote cancer cells proliferation, migration, invasion, angiogenesis and immune evasion. Both ECM itself and ECM stiffening-induced mechanical stimuli may activate cell membrane receptors and mechanosensors such as integrin, Piezo1 and TRPV4, thereby modulating the malignant phenotype of tumor and stromal cells. A better understanding of how ECM stiffness regulates tumor progression will contribute to the development of new therapeutics. The rapidly expanding evidence in this research area suggests that the regulators and effectors of ECM stiffness represent potential therapeutic targets for cancer. This review summarizes recent work on the regulation of ECM stiffness in cancer, the effects of ECM stiffness on tumor progression, cancer immunity and drug resistance. We also discuss the potential targets that may be druggable to intervene ECM stiffness and tumor progression. Based on these advances, future efforts can be made to develop more effective and safe drugs to interrupt ECM stiffness-induced oncogenic signaling, cancer progression and drug resistance.

          Related collections

          Most cited references175

          • Record: found
          • Abstract: found
          • Article: not found

          Role of YAP/TAZ in mechanotransduction.

          Cells perceive their microenvironment not only through soluble signals but also through physical and mechanical cues, such as extracellular matrix (ECM) stiffness or confined adhesiveness. By mechanotransduction systems, cells translate these stimuli into biochemical signals controlling multiple aspects of cell behaviour, including growth, differentiation and cancer malignant progression, but how rigidity mechanosensing is ultimately linked to activity of nuclear transcription factors remains poorly understood. Here we report the identification of the Yorkie-homologues YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif, also known as WWTR1) as nuclear relays of mechanical signals exerted by ECM rigidity and cell shape. This regulation requires Rho GTPase activity and tension of the actomyosin cytoskeleton, but is independent of the Hippo/LATS cascade. Crucially, YAP/TAZ are functionally required for differentiation of mesenchymal stem cells induced by ECM stiffness and for survival of endothelial cells regulated by cell geometry; conversely, expression of activated YAP overrules physical constraints in dictating cell behaviour. These findings identify YAP/TAZ as sensors and mediators of mechanical cues instructed by the cellular microenvironment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Remodelling the extracellular matrix in development and disease.

            The extracellular matrix (ECM) is a highly dynamic structure that is present in all tissues and continuously undergoes controlled remodelling. This process involves quantitative and qualitative changes in the ECM, mediated by specific enzymes that are responsible for ECM degradation, such as metalloproteinases. The ECM interacts with cells to regulate diverse functions, including proliferation, migration and differentiation. ECM remodelling is crucial for regulating the morphogenesis of the intestine and lungs, as well as of the mammary and submandibular glands. Dysregulation of ECM composition, structure, stiffness and abundance contributes to several pathological conditions, such as fibrosis and invasive cancer. A better understanding of how the ECM regulates organ structure and function and of how ECM remodelling affects disease progression will contribute to the development of new therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TGF-β: the master regulator of fibrosis.

              Transforming growth factor-β (TGF-β) is the primary factor that drives fibrosis in most, if not all, forms of chronic kidney disease (CKD). Inhibition of the TGF-β isoform, TGF-β1, or its downstream signalling pathways substantially limits renal fibrosis in a wide range of disease models whereas overexpression of TGF-β1 induces renal fibrosis. TGF-β1 can induce renal fibrosis via activation of both canonical (Smad-based) and non-canonical (non-Smad-based) signalling pathways, which result in activation of myofibroblasts, excessive production of extracellular matrix (ECM) and inhibition of ECM degradation. The role of Smad proteins in the regulation of fibrosis is complex, with competing profibrotic and antifibrotic actions (including in the regulation of mesenchymal transitioning), and with complex interplay between TGF-β/Smads and other signalling pathways. Studies over the past 5 years have identified additional mechanisms that regulate the action of TGF-β1/Smad signalling in fibrosis, including short and long noncoding RNA molecules and epigenetic modifications of DNA and histone proteins. Although direct targeting of TGF-β1 is unlikely to yield a viable antifibrotic therapy due to the involvement of TGF-β1 in other processes, greater understanding of the various pathways by which TGF-β1 controls fibrosis has identified alternative targets for the development of novel therapeutics to halt this most damaging process in CKD.
                Bookmark

                Author and article information

                Contributors
                jyangfu@scu.edu.cn
                695828920@qq.com
                wangjiaobox@sina.com
                lylresearch@163.com
                tina621@163.com
                huahuihx@scu.edu.cn
                Journal
                J Hematol Oncol
                J Hematol Oncol
                Journal of Hematology & Oncology
                BioMed Central (London )
                1756-8722
                24 March 2022
                24 March 2022
                2022
                : 15
                : 34
                Affiliations
                [1 ]GRID grid.412901.f, ISNI 0000 0004 1770 1022, Laboratory of Oncogene, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, , West China Hospital, Sichuan University, ; Chengdu, China
                [2 ]GRID grid.411304.3, ISNI 0000 0001 0376 205X, School of Basic Medicine, , Chengdu University of Traditional Chinese Medicine, ; Chengdu, China
                [3 ]GRID grid.412901.f, ISNI 0000 0004 1770 1022, Cancer Center, , West China Hospital, Sichuan University, ; Chengdu, China
                [4 ]GRID grid.412901.f, ISNI 0000 0004 1770 1022, Laboratory of Stem Cell Biology, , West China Hospital, Sichuan University, ; Chengdu, China
                Author information
                http://orcid.org/0000-0002-8696-2651
                Article
                1252
                10.1186/s13045-022-01252-0
                8943941
                35331296
                2b6eaa93-b743-4252-b042-b93283220d76
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 18 January 2022
                : 9 March 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81872388
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2022

                Oncology & Radiotherapy
                cancer,cancer therapy,drug resistance,extracellular matrix,ecm stiffness,mechanotransducer,piezo

                Comments

                Comment on this article