21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA Microarray-Based Screening and Characterization of Traditional Chinese Medicine

      review-article
      Microarrays
      MDPI
      DNA microarray, traditional Chinese medicine, signaling pathway, estrogen, food chemicals

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The application of DNA microarray assay (DMA) has entered a new era owing to recent innovations in omics technologies. This review summarizes recent applications of DMA-based gene expression profiling by focusing on the screening and characterization of traditional Chinese medicine. First, herbs, mushrooms, and dietary plants analyzed by DMA along with their effective components and their biological/physiological effects are summarized and discussed by examining their comprehensive list and a list of representative effective chemicals. Second, the mechanisms of action of traditional Chinese medicine are summarized by examining the genes and pathways responsible for the action, the cell functions involved in the action, and the activities found by DMA (silent estrogens). Third, applications of DMA for traditional Chinese medicine are discussed by examining reported examples and new protocols for its use in quality control. Further innovations in the signaling pathway-based evaluation of beneficial effects and the assessment of potential risks of traditional Chinese medicine are expected, just as are observed in other closely related fields, such as the therapeutic, environmental, nutritional, and pharmacological fields.

          Related collections

          Most cited references189

          • Record: found
          • Abstract: found
          • Article: not found

          Toxicity testing in the 21st century: a vision and a strategy.

          S. J. Gibb (2007)
          Advances in molecular biology, biotechnology, and other fields are paving the way for major improvements in how scientists evaluate the health risks posed by potentially toxic chemicals found at low levels in the environment. These advances would make toxicity testing quicker, less expensive, and more directly relevant to human exposures. This National Research Council report creates a far-reaching vision for the future of toxicity testing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster.

            Curcumin, an extract from the rhizome of the plant Curcuma longa (turmeric), has been widely used as a spice and herbal medicine in Asia. It has been suggested to have many biological activities, such as antioxidative, antiinflammatory, anticancer, chemopreventive, and antineurodegenerative properties. We evaluated the impact of curcumin on life span, fecundity, feeding rate, oxidative stress, locomotion, and gene expression in two different wild-type Drosophila melanogaster strains, Canton-S and Ives, under two different experimental conditions. We report that curcumin extended the life span of two different strains of D. melanogaster, an effect that was accompanied by protection against oxidative stress, improvement in locomotion, and chemopreventive effects. Life span extension was gender and genotype specific. Curcumin also modulated the expression of several aging-related genes, including mth, thor, InR, and JNK. The observed positive effects of curcumin on life span and health span in two different D. melanogaster strains demonstrate a potential applicability of curcumin treatment in mammals. The ability of curcumin to mitigate the expression levels of age-associated genes in young flies suggests that the action of curcumin on these genes is a cause, rather than an effect, of its life span-extending effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Discovery of Molecular Mechanisms of Traditional Chinese Medicinal Formula Si-Wu-Tang Using Gene Expression Microarray and Connectivity Map

              To pursue a systematic approach to discovery of mechanisms of action of traditional Chinese medicine (TCM), we used microarrays, bioinformatics and the “Connectivity Map” (CMAP) to examine TCM-induced changes in gene expression. We demonstrated that this approach can be used to elucidate new molecular targets using a model TCM herbal formula Si-Wu-Tang (SWT) which is widely used for women's health. The human breast cancer MCF-7 cells treated with 0.1 µM estradiol or 2.56 mg/ml of SWT showed dramatic gene expression changes, while no significant change was detected for ferulic acid, a known bioactive compound of SWT. Pathway analysis using differentially expressed genes related to the treatment effect identified that expression of genes in the nuclear factor erythroid 2-related factor 2 (Nrf2) cytoprotective pathway was most significantly affected by SWT, but not by estradiol or ferulic acid. The Nrf2-regulated genes HMOX1, GCLC, GCLM, SLC7A11 and NQO1 were upreguated by SWT in a dose-dependent manner, which was validated by real-time RT-PCR. Consistently, treatment with SWT and its four herbal ingredients resulted in an increased antioxidant response element (ARE)-luciferase reporter activity in MCF-7 and HEK293 cells. Furthermore, the gene expression profile of differentially expressed genes related to SWT treatment was used to compare with those of 1,309 compounds in the CMAP database. The CMAP profiles of estradiol-treated MCF-7 cells showed an excellent match with SWT treatment, consistent with SWT's widely claimed use for women's diseases and indicating a phytoestrogenic effect. The CMAP profiles of chemopreventive agents withaferin A and resveratrol also showed high similarity to the profiles of SWT. This study identified SWT as an Nrf2 activator and phytoestrogen, suggesting its use as a nontoxic chemopreventive agent, and demonstrated the feasibility of combining microarray gene expression profiling with CMAP mining to discover mechanisms of actions and to identify new health benefits of TCMs.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Microarrays (Basel)
                Microarrays (Basel)
                microarrays
                Microarrays
                MDPI
                2076-3905
                30 January 2017
                March 2017
                : 6
                : 1
                : 4
                Affiliations
                Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Ibaraki, Japan; kiyama.r@ 123456aist.go.jp ; Tel.: +81-29-861-6189
                Article
                microarrays-06-00004
                10.3390/microarrays6010004
                5374364
                28146102
                2b09cc8e-8086-4856-8c72-9cd0a8e02bb2
                © 2017 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 December 2016
                : 23 January 2017
                Categories
                Review

                dna microarray,traditional chinese medicine,signaling pathway,estrogen,food chemicals

                Comments

                Comment on this article