9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design principles in mechanically adaptable biomaterials for repairing annulus fibrosus rupture: A review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Annulus fibrosus (AF) plays a crucial role in the biomechanical loading of intervertebral disc (IVD). AF is difficult to self-heal when the annulus tears develop, because AF has a unique intricate structure and biologic milieu in vivo. Tissue engineering is promising for repairing AF rupture, but construction of suitable mechanical matching devices or scaffolds is still a grand challenge. To deeply know the varied forces involved in the movement of the native annulus is highly beneficial for designing biomimetic scaffolds to recreate the AF function. In this review, we overview six freedom degrees of forces and adhesion strength on AF tissue. Then, we summarize the mechanical modalities to simulate related forces on AF and to assess the characteristics of biomaterials. We finally outline some current advanced techniques to develop mechanically adaptable biomaterials for AF rupture repair.

          Graphical abstract

          Highlights

          • Mechanical loading on annulus fibrosus.

          • Design mechanical principles of annulus-repairing materials.

          • Systematically mechanical characterizations for designed biomaterials.

          • The advanced fabricating techniques for mechanical-adaptable biomaterials to repair annulus.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          What low back pain is and why we need to pay attention

          Low back pain is a very common symptom. It occurs in high-income, middle-income, and low-income countries and all age groups from children to the elderly population. Globally, years lived with disability caused by low back pain increased by 54% between 1990 and 2015, mainly because of population increase and ageing, with the biggest increase seen in low-income and middle-income countries. Low back pain is now the leading cause of disability worldwide. For nearly all people with low back pain, it is not possible to identify a specific nociceptive cause. Only a small proportion of people have a well understood pathological cause-eg, a vertebral fracture, malignancy, or infection. People with physically demanding jobs, physical and mental comorbidities, smokers, and obese individuals are at greatest risk of reporting low back pain. Disabling low back pain is over-represented among people with low socioeconomic status. Most people with new episodes of low back pain recover quickly; however, recurrence is common and in a small proportion of people, low back pain becomes persistent and disabling. Initial high pain intensity, psychological distress, and accompanying pain at multiple body sites increases the risk of persistent disabling low back pain. Increasing evidence shows that central pain-modulating mechanisms and pain cognitions have important roles in the development of persistent disabling low back pain. Cost, health-care use, and disability from low back pain vary substantially between countries and are influenced by local culture and social systems, as well as by beliefs about cause and effect. Disability and costs attributed to low back pain are projected to increase in coming decades, in particular in low-income and middle-income countries, where health and other systems are often fragile and not equipped to cope with this growing burden. Intensified research efforts and global initiatives are clearly needed to address the burden of low back pain as a public health problem.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of cytokines in intervertebral disc degeneration: pain and disc content.

            Degeneration of the intervertebral discs (IVDs) is a major contributor to back, neck and radicular pain. IVD degeneration is characterized by increases in levels of the proinflammatory cytokines TNF, IL-1α, IL-1β, IL-6 and IL-17 secreted by the IVD cells; these cytokines promote extracellular matrix degradation, chemokine production and changes in IVD cell phenotype. The resulting imbalance in catabolic and anabolic responses leads to the degeneration of IVD tissues, as well as disc herniation and radicular pain. The release of chemokines from degenerating discs promotes the infiltration and activation of immune cells, further amplifying the inflammatory cascade. Leukocyte migration into the IVD is accompanied by the appearance of microvasculature tissue and nerve fibres. Furthermore, neurogenic factors, generated by both disc and immune cells, induce expression of pain-associated cation channels in the dorsal root ganglion. Depolarization of these ion channels is likely to promote discogenic and radicular pain, and reinforce the cytokine-mediated degenerative cascade. Taken together, an enhanced understanding of the contribution of cytokines and immune cells to these catabolic, angiogenic and nociceptive processes could provide new targets for the treatment of symptomatic disc disease. In this Review, the role of key inflammatory cytokines during each of the individual phases of degenerative disc disease, as well as the outcomes of major clinical studies aimed at blocking cytokine function, are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing

              Designing wound dressing materials with outstanding therapeutic effects, self-healing, adhesiveness and suitable mechanical property has great practical significance in healthcare, especially for joints skin wound healing. Here, we designed a kind of self-healing injectable micelle/hydrogel composites with multi-functions as wound dressing for joint skin damage. By combining the dynamic Schiff base and copolymer micelle cross-linking in one system, a series of hydrogels were prepared by mixing quaternized chitosan (QCS) and benzaldehyde-terminated Pluronic®F127 (PF127-CHO) under physiological conditions. The inherent antibacterial property, pH-dependent biodegradation and release behavior were investigated to confirm multi-functions of wound dressing. The hydrogel dressings showed suitable stretchable and compressive property, comparable modulus with human skin, good adhesiveness and fast self-healing ability to bear deformation. The hydrogels exhibited efficient hemostatic performance and biocompatibility. Moreover, the curcumin loaded hydrogel showed good antioxidant ability and pH responsive release profiles. In vivo experiments indicated that curcumin loaded hydrogels significantly accelerated wound healing rate with higher granulation tissue thickness and collagen disposition and upregulated vascular endothelial growth factor (VEGF) in a full-thickness skin defect model. Taken together, the antibacterial adhesive hydrogels with self-healing and good mechanical property offer significant promise as dressing materials for joints skin wound healing.
                Bookmark

                Author and article information

                Contributors
                Journal
                Bioact Mater
                Bioact Mater
                Bioactive Materials
                KeAi Publishing
                2452-199X
                04 September 2023
                January 2024
                04 September 2023
                : 31
                : 422-439
                Affiliations
                [a ]Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
                [b ]Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
                [c ]Pain Research Center, Sun Yat-Sen University, Guangzhou 510080, China
                Author notes
                []Corresponding author. wudc@ 123456sustech.edu.cn
                [∗∗ ]Corresponding author. liuhm@ 123456sustech.edu.cn
                [∗∗∗ ]Corresponding author. Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China. zhzhaom@ 123456mail.sysu.edu.cn
                Article
                S2452-199X(23)00251-7
                10.1016/j.bioactmat.2023.08.012
                10485601
                37692911
                29352869-3744-4a91-855b-4220a978d898
                © 2023 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 1 June 2023
                : 25 July 2023
                : 12 August 2023
                Categories
                Review Article

                annulus fibrosus,forces,mechanical matching,high tough,high adhesion

                Comments

                Comment on this article