17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Quest for Mechanisms of Plant Root Exudation Brings New Results and Models, 300 Years after Hales

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The review summarizes some of our current knowledge on the phenomenon of exudation from the cut surface of detached roots with emphasis on results that were mostly established over the last fifty years. The phenomenon is quantitatively documented in the 18th century (by Hales in 1727). By the 19th century, theories mainly ascribed exudation to the secretion of living root cells. The 20th century favored the osmometer model of root exudation. Nevertheless, growing insights into the mechanisms of water transport and new or rediscovered observations stimulated the quest for a more adequate exudation model. The historical overview shows how understanding of exudation changed with time following experimental opportunities and novel ideas from different areas of knowledge. Later theories included cytoskeleton-dependent micro-pulsations of turgor in root cells to explain the observed water exudation. Recent progress in experimental biomedicine led to detailed study of channels and transporters for ion transport via cellular membranes and to the discovery of aquaporins. These universal molecular entities have been incorporated to the more complex models of water transport via plant roots. A new set of ideas and explanations was based on cellular osmoregulation by mechanosensitive ion channels. Thermodynamic calculations predicted the possibility of water transport against osmotic forces based on co-transport of water with ions via cation-chloride cotransporters. Recent observations of rhizodermis exudation, exudation of roots without an external aqueous medium, segments cut from roots, pulses of exudation, a phase shifting of water uptake and exudation, and of effects of physiologically active compounds (like ion channel blockers, metabolic agents, and cytoskeletal agents) will likely refine our understanding of the phenomenon. So far, it seems that more than one mechanism is responsible for root pressure and root exudation, processes which are important for refilling of embolized xylem vessels. However, recent advances in ion and water transport research at the molecular level suggest potential future directions to understanding of root exudation and new models awaiting experimental testing.

          Related collections

          Most cited references186

          • Record: found
          • Abstract: found
          • Article: not found

          The role of root exudates in rhizosphere interactions with plants and other organisms.

          The rhizosphere encompasses the millimeters of soil surrounding a plant root where complex biological and ecological processes occur. This review describes recent advances in elucidating the role of root exudates in interactions between plant roots and other plants, microbes, and nematodes present in the rhizosphere. Evidence indicating that root exudates may take part in the signaling events that initiate the execution of these interactions is also presented. Various positive and negative plant-plant and plant-microbe interactions are highlighted and described from the molecular to the ecosystem scale. Furthermore, methodologies to address these interactions under laboratory conditions are presented.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Regulation and function of root exudates

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Vulnerability of Xylem to Cavitation and Embolism

                Bookmark

                Author and article information

                Journal
                Plants (Basel)
                Plants (Basel)
                plants
                Plants
                MDPI
                2223-7747
                25 December 2020
                January 2021
                : 10
                : 1
                : 38
                Affiliations
                [1 ]Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA
                [2 ]K.A. Timiriazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow 127276, Russia
                [3 ]Max Planck Institute for the History of Science, Boltzmannstraße 22, 14195 Berlin, Germany
                Author notes
                [†]

                Both Authors contributed equally to the text.

                Author information
                https://orcid.org/0000-0003-1621-6490
                Article
                plants-10-00038
                10.3390/plants10010038
                7823307
                33375713
                2919dfdb-0e2a-4d1b-9cb2-597f44d9413d
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 November 2020
                : 21 December 2020
                Categories
                Review

                root pressure,exudation,xylem embolism,mechanosensitive ion channels,ion transporters,aquaporins,water transport

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content115

                Cited by4

                Most referenced authors1,585