16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Integration of Fuzzy-Weighted Zero-Inconsistency and Fuzzy Decision by Opinion Score Methods under a q-Rung Orthopair Environment: A Distribution Case Study of COVID-19 Vaccine Doses

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Owing to the limitations of Pythagorean fuzzy and intuitionistic fuzzy sets, scientists have developed a distinct and successive fuzzy set called the q-rung orthopair fuzzy set (q-ROFS), which eliminates restrictions encountered by decision-makers in multicriteria decision making (MCDM) methods and facilitates the representation of complex uncertain information in real-world circumstances. Given its advantages and flexibility, this study has extended two considerable MCDM methods the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) under the fuzzy environment of q-ROFS. The extensions were called q-rung orthopair fuzzy-weighted zero-inconsistency (q-ROFWZIC) method and q-rung orthopair fuzzy decision by opinion score method (q-ROFDOSM). The methodology formulated had two phases. The first phase ‘development’ presented the sequential steps of each method thoroughly.The q-ROFWZIC method was formulated and used in determining the weights of evaluation criteria and then integrated into the q-ROFDOSM for the prioritisation of alternatives on the basis of the weighted criteria. In the second phase, a case study regarding the MCDM problem of coronavirus disease 2019 (COVID-19) vaccine distribution was performed. The purpose was to provide fair allocation of COVID-19 vaccine doses. A decision matrix based on an intersection of ‘recipients list’ and ‘COVID-19 distribution criteria’ was adopted. The proposed methods were evaluated according to systematic ranking assessment and sensitivity analysis, which revealed that the ranking was subject to a systematic ranking that is supported by high correlation results over different scenarios with variations in the weights of criteria.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: not found
          • Article: not found

          Some q-Rung Orthopair Fuzzy Aggregation Operators and their Applications to Multiple-Attribute Decision Making

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Systematic Review of Artificial Intelligence Techniques in the Detection and Classification of COVID-19 Medical Images in Terms of Evaluation and Benchmarking: Taxonomy Analysis, Challenges, Future Solutions and Methodological Aspects

            This study presents a systematic review of artificial intelligence (AI) techniques used in the detection and classification of coronavirus disease 2019 (COVID-19) medical images in terms of evaluation and benchmarking. Five reliable databases, namely, IEEE Xplore, Web of Science, PubMed, ScienceDirect and Scopus were used to obtain relevant studies of the given topic. Several filtering and scanning stages were performed according to the inclusion/exclusion criteria to screen the 36 studies obtained; however, only 11 studies met the criteria. Taxonomy was performed, and the 11 studies were classified on the basis of two categories, namely, review and research studies. Then, a deep analysis and critical review were performed to highlight the challenges and critical gaps outlined in the academic literature of the given subject. Results showed that no relevant study evaluated and benchmarked AI techniques utilised in classification tasks (i.e. binary, multi-class, multi-labelled and hierarchical classifications) of COVID-19 medical images. In case evaluation and benchmarking will be conducted, three future challenges will be encountered, namely, multiple evaluation criteria within each classification task, trade-off amongst criteria and importance of these criteria. According to the discussed future challenges, the process of evaluation and benchmarking AI techniques used in the classification of COVID-19 medical images considered multi-complex attribute problems. Thus, adopting multi-criteria decision analysis (MCDA) is an essential and effective approach to tackle the problem complexity. Moreover, this study proposes a detailed methodology for the evaluation and benchmarking of AI techniques used in all classification tasks of COVID-19 medical images as future directions; such methodology is presented on the basis of three sequential phases. Firstly, the identification procedure for the construction of four decision matrices, namely, binary, multi-class, multi-labelled and hierarchical, is presented on the basis of the intersection of evaluation criteria of each classification task and AI classification techniques. Secondly, the development of the MCDA approach for benchmarking AI classification techniques is provided on the basis of the integrated analytic hierarchy process and VlseKriterijumska Optimizacija I Kompromisno Resenje methods. Lastly, objective and subjective validation procedures are described to validate the proposed benchmarking solutions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of biological Data Mining and Machine Learning Techniques in Detecting and Diagnosing the Novel Coronavirus (COVID-19): A Systematic Review

              Coronaviruses (CoVs) are a large family of viruses that are common in many animal species, including camels, cattle, cats and bats. Animal CoVs, such as Middle East respiratory syndrome-CoV, severe acute respiratory syndrome (SARS)-CoV, and the new virus named SARS-CoV-2, rarely infect and spread among humans. On January 30, 2020, the International Health Regulations Emergency Committee of the World Health Organisation declared the outbreak of the resulting disease from this new CoV called ‘COVID-19’, as a ‘public health emergency of international concern’. This global pandemic has affected almost the whole planet and caused the death of more than 315,131 patients as of the date of this article. In this context, publishers, journals and researchers are urged to research different domains and stop the spread of this deadly virus. The increasing interest in developing artificial intelligence (AI) applications has addressed several medical problems. However, such applications remain insufficient given the high potential threat posed by this virus to global public health. This systematic review addresses automated AI applications based on data mining and machine learning (ML) algorithms for detecting and diagnosing COVID-19. We aimed to obtain an overview of this critical virus, address the limitations of utilising data mining and ML algorithms, and provide the health sector with the benefits of this technique. We used five databases, namely, IEEE Xplore, Web of Science, PubMed, ScienceDirect and Scopus and performed three sequences of search queries between 2010 and 2020. Accurate exclusion criteria and selection strategy were applied to screen the obtained 1305 articles. Only eight articles were fully evaluated and included in this review, and this number only emphasised the insufficiency of research in this important area. After analysing all included studies, the results were distributed following the year of publication and the commonly used data mining and ML algorithms. The results found in all papers were discussed to find the gaps in all reviewed papers. Characteristics, such as motivations, challenges, limitations, recommendations, case studies, and features and classes used, were analysed in detail. This study reviewed the state-of-the-art techniques for CoV prediction algorithms based on data mining and ML assessment. The reliability and acceptability of extracted information and datasets from implemented technologies in the literature were considered. Findings showed that researchers must proceed with insights they gain, focus on identifying solutions for CoV problems, and introduce new improvements. The growing emphasis on data mining and ML techniques in medical fields can provide the right environment for change and improvement.
                Bookmark

                Author and article information

                Journal
                Comput Stand Interfaces
                Comput Stand Interfaces
                Computer Standards & Interfaces
                Elsevier B.V.
                0920-5489
                1872-7018
                25 August 2021
                25 August 2021
                : 103572
                Affiliations
                [a ]Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
                [b ]School of Computing and Information Systems, University of Melbourne, 700 Swanston Street, Victoria 3010 Australia
                [c ]College of Engineering, IT and Environment, Charles Darwin University, NT, Australia
                Author notes
                [* ]Corresponding:
                Article
                S0920-5489(21)00067-2 103572
                10.1016/j.csi.2021.103572
                8386109
                34456503
                28ea1c1b-1a61-49a2-a30e-ca71e3269c17
                © 2021 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 24 March 2021
                : 14 August 2021
                : 22 August 2021
                Categories
                Article

                covid-19,vaccine,multicriteria decision-making,q-rung orthopair fuzzy,fwzic,fdosm

                Comments

                Comment on this article