18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Microplastics waste in environment: A perspective on recycling issues from PPE kits and face masks during the COVID-19 pandemic

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During the COVID-19 pandemic, the extensive use of face masks and protective personal equipment (PPE) kits has led to increasing degree of microplastic pollution (MP) because they are typically discarded into the seas, rivers, streets, and other parts of the environment. Currently, microplastic (MP) pollution has a negative impact on the environment because of high-level fragmentation. Typically, MP pollution can be detected by various techniques, such as microscopic analysis, density separation, and Fourier transform infrared spectrometry. However, there are limited studies on disposable face masks and PPE kits. A wide range of marine species ingest MPs in the form of fibers and fragments, which directly affect the environment and human health; thus, more research and development are needed on the effect of MP pollution on human health. This article provides a perspective on the origin and distribution of MP pollution in waterbodies (e.g., rivers, ponds, lakes, and seas) and wastewater treatment plants, and reviews the possible remediation of MP pollution related to the excessive disposal of face masks and PPE kits to aquatic environments.

          Graphical abstract

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Microplastics in the marine environment.

          This review discusses the mechanisms of generation and potential impacts of microplastics in the ocean environment. Weathering degradation of plastics on the beaches results in their surface embrittlement and microcracking, yielding microparticles that are carried into water by wind or wave action. Unlike inorganic fines present in sea water, microplastics concentrate persistent organic pollutants (POPs) by partition. The relevant distribution coefficients for common POPs are several orders of magnitude in favour of the plastic medium. Consequently, the microparticles laden with high levels of POPs can be ingested by marine biota. Bioavailability and the efficiency of transfer of the ingested POPs across trophic levels are not known and the potential damage posed by these to the marine ecosystem has yet to be quantified and modelled. Given the increasing levels of plastic pollution of the oceans it is important to better understand the impact of microplastics in the ocean food web. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study

            Summary Background Data for front-line health-care workers and risk of COVID-19 are limited. We sought to assess risk of COVID-19 among front-line health-care workers compared with the general community and the effect of personal protective equipment (PPE) on risk. Methods We did a prospective, observational cohort study in the UK and the USA of the general community, including front-line health-care workers, using self-reported data from the COVID Symptom Study smartphone application (app) from March 24 (UK) and March 29 (USA) to April 23, 2020. Participants were voluntary users of the app and at first use provided information on demographic factors (including age, sex, race or ethnic background, height and weight, and occupation) and medical history, and subsequently reported any COVID-19 symptoms. We used Cox proportional hazards modelling to estimate multivariate-adjusted hazard ratios (HRs) of our primary outcome, which was a positive COVID-19 test. The COVID Symptom Study app is registered with ClinicalTrials.gov, NCT04331509. Findings Among 2 035 395 community individuals and 99 795 front-line health-care workers, we recorded 5545 incident reports of a positive COVID-19 test over 34 435 272 person-days. Compared with the general community, front-line health-care workers were at increased risk for reporting a positive COVID-19 test (adjusted HR 11·61, 95% CI 10·93–12·33). To account for differences in testing frequency between front-line health-care workers and the general community and possible selection bias, an inverse probability-weighted model was used to adjust for the likelihood of receiving a COVID-19 test (adjusted HR 3·40, 95% CI 3·37–3·43). Secondary and post-hoc analyses suggested adequacy of PPE, clinical setting, and ethnic background were also important factors. Interpretation In the UK and the USA, risk of reporting a positive test for COVID-19 was increased among front-line health-care workers. Health-care systems should ensure adequate availability of PPE and develop additional strategies to protect health-care workers from COVID-19, particularly those from Black, Asian, and minority ethnic backgrounds. Additional follow-up of these observational findings is needed. Funding Zoe Global, Wellcome Trust, Engineering and Physical Sciences Research Council, National Institutes of Health Research, UK Research and Innovation, Alzheimer's Society, National Institutes of Health, National Institute for Occupational Safety and Health, and Massachusetts Consortium on Pathogen Readiness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea

              Plastic pollution is ubiquitous throughout the marine environment, yet estimates of the global abundance and weight of floating plastics have lacked data, particularly from the Southern Hemisphere and remote regions. Here we report an estimate of the total number of plastic particles and their weight floating in the world's oceans from 24 expeditions (2007–2013) across all five sub-tropical gyres, costal Australia, Bay of Bengal and the Mediterranean Sea conducting surface net tows (N = 680) and visual survey transects of large plastic debris (N = 891). Using an oceanographic model of floating debris dispersal calibrated by our data, and correcting for wind-driven vertical mixing, we estimate a minimum of 5.25 trillion particles weighing 268,940 tons. When comparing between four size classes, two microplastic 4.75 mm, a tremendous loss of microplastics is observed from the sea surface compared to expected rates of fragmentation, suggesting there are mechanisms at play that remove <4.75 mm plastic particles from the ocean surface.
                Bookmark

                Author and article information

                Journal
                Environ Technol Innov
                Environ Technol Innov
                Environmental Technology & Innovation
                The Author(s). Published by Elsevier B.V.
                2352-1864
                11 January 2022
                11 January 2022
                : 102290
                Affiliations
                [a ]Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), South Korea
                [b ]Institute of Environmental Engineering and Management, National Taipei University of Technology, Taiwan
                Author notes
                [* ]Corresponding author.
                Article
                S2352-1864(22)00012-8 102290
                10.1016/j.eti.2022.102290
                8748211
                35036477
                28983152-abd2-4cb8-833b-e288023d2aa5
                © 2022 The Author(s)

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 18 August 2021
                : 28 December 2021
                : 5 January 2022
                Categories
                Article

                microplastics (mps),pollution,environmental remediation,covid-19 pandemic,face masks,ppe kits

                Comments

                Comment on this article