6
views
0
recommends
+1 Recommend
3 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Non-invasive respiratory support in the management of acute COVID-19 pneumonia: considerations for clinical practice and priorities for research

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-invasive respiratory support (NIRS) has increasingly been used in the management of COVID-19-associated acute respiratory failure, but questions remain about the utility, safety, and outcome benefit of NIRS strategies. We identified two randomised controlled trials and 83 observational studies, compromising 13 931 patients, that examined the effects of NIRS modalities—high-flow nasal oxygen, continuous positive airway pressure, and bilevel positive airway pressure—on patients with COVID-19. Of 5120 patients who were candidates for full treatment escalation, 1880 (37%) progressed to invasive mechanical ventilation and 3658 of 4669 (78%) survived to study end. Survival was 30% among the 1050 patients for whom NIRS was the stated ceiling of treatment. The two randomised controlled trials indicate superiority of non-invasive ventilation over high-flow nasal oxygen in reducing the need for intubation. Reported complication rates were low. Overall, the studies indicate that NIRS in patients with COVID-19 is safe, improves resource utilisation, and might be associated with better outcomes. To guide clinical decision making, prospective, randomised studies are needed to address timing of intervention, optimal use of NIRS modalities—alone or in combination—and validation of tools such as oxygenation indices, response to a trial of NIRS, and inflammatory markers as predictors of treatment success.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration

          Systematic reviews and meta-analyses are essential to summarise evidence relating to efficacy and safety of healthcare interventions accurately and reliably. The clarity and transparency of these reports, however, are not optimal. Poor reporting of systematic reviews diminishes their value to clinicians, policy makers, and other users. Since the development of the QUOROM (quality of reporting of meta-analysis) statement—a reporting guideline published in 1999—there have been several conceptual, methodological, and practical advances regarding the conduct and reporting of systematic reviews and meta-analyses. Also, reviews of published systematic reviews have found that key information about these studies is often poorly reported. Realising these issues, an international group that included experienced authors and methodologists developed PRISMA (preferred reporting items for systematic reviews and meta-analyses) as an evolution of the original QUOROM guideline for systematic reviews and meta-analyses of evaluations of health care interventions. The PRISMA statement consists of a 27-item checklist and a four-phase flow diagram. The checklist includes items deemed essential for transparent reporting of a systematic review. In this explanation and elaboration document, we explain the meaning and rationale for each checklist item. For each item, we include an example of good reporting and, where possible, references to relevant empirical studies and methodological literature. The PRISMA statement, this document, and the associated website (www.prisma-statement.org/) should be helpful resources to improve reporting of systematic reviews and meta-analyses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study

            (2020)
            Purpose To describe acute respiratory distress syndrome (ARDS) severity, ventilation management, and the outcomes of ICU patients with laboratory-confirmed COVID-19 and to determine risk factors of 90-day mortality post-ICU admission. Methods COVID-ICU is a multi-center, prospective cohort study conducted in 138 hospitals in France, Belgium, and Switzerland. Demographic, clinical, respiratory support, adjunctive interventions, ICU length-of-stay, and survival data were collected. Results From February 25 to May 4, 2020, 4643 patients (median [IQR] age 63 [54–71] years and SAPS II 37 [28–50]) were admitted in ICU, with day-90 post-ICU admission status available for 4244. On ICU admission, standard oxygen therapy, high-flow oxygen, and non-invasive ventilation were applied to 29%, 19%, and 6% patients, respectively. 2635 (63%) patients were intubated during the first 24 h whereas overall 3376 (80%) received invasive mechanical ventilation (MV) at one point during their ICU stay. Median (IQR) positive end-expiratory and plateau pressures were 12 (10–14) cmH2O, and 24 (21–27) cmH2O, respectively. The mechanical power transmitted by the MV to the lung was 26.5 (18.6–34.9) J/min. Paralyzing agents and prone position were applied to 88% and 70% of patients intubated at Day-1, respectively. Pulmonary embolism and ventilator-associated pneumonia were diagnosed in 207 (9%) and 1209 (58%) of these patients. On day 90, 1298/4244 (31%) patients had died. Among patients who received invasive or non-invasive ventilation on the day of ICU admission, day-90 mortality increased with the severity of ARDS at ICU admission (30%, 34%, and 50% for mild, moderate, and severe ARDS, respectively) and decreased from 42 to 25% over the study period. Early independent predictors of 90-day mortality were older age, immunosuppression, severe obesity, diabetes, higher renal and cardiovascular SOFA score components, lower PaO2/FiO2 ratio and a shorter time between first symptoms and ICU admission. Conclusion Among more than 4000 critically ill patients with COVID-19 admitted to our ICUs, 90-day mortality was 31% and decreased from 42 to 25% over the study period. Mortality was higher in older, diabetic, obese and severe ARDS patients. Electronic supplementary material The online version of this article (10.1007/s00134-020-06294-x) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of Helmet Noninvasive Ventilation vs High-Flow Nasal Oxygen on Days Free of Respiratory Support in Patients With COVID-19 and Moderate to Severe Hypoxemic Respiratory Failure: The HENIVOT Randomized Clinical Trial

              High-flow nasal oxygen is recommended as initial treatment for acute hypoxemic respiratory failure and is widely applied in patients with COVID-19.
                Bookmark

                Author and article information

                Journal
                Lancet Respir Med
                Lancet Respir Med
                The Lancet. Respiratory Medicine
                Elsevier Ltd.
                2213-2600
                2213-2619
                9 November 2021
                9 November 2021
                Affiliations
                [a ]Centre for Human Health and Performance, Institute of Sport, Exercise and Health, Division of Medicine, University College London, London, UK
                [b ]Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
                [c ]The Whittington Health NHS Foundation Trust, London, UK
                [d ]University College London Hospitals NHS Foundation Trust, London, UK
                [e ]Digital Publishing, Office for National Statistics, Fareham, Hampshire, UK
                Author notes
                [* ]Correspondence to: Dr Sampath Weerakkody, Institute of Sport, Exercise and Health, University College London, 170 Tottenham Court Road, London W1T 7HA, UK
                [*]

                Co-senior authors

                Article
                S2213-2600(21)00414-8
                10.1016/S2213-2600(21)00414-8
                8577844
                34767767
                27a3230b-0109-454c-b5da-f3200ceb84e7
                © 2021 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Personal View

                Comments

                Comment on this article

                scite_

                Similar content151

                Cited by20

                Most referenced authors3,021