5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dry Powder for Pulmonary Delivery: A Comprehensive Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pulmonary route has long been used for drug administration for both local and systemic treatment. It possesses several advantages, which can be categorized into physiological, i.e., large surface area, thin epithelial membrane, highly vascularized, limited enzymatic activity, and patient convenience, i.e., non-invasive, self-administration over oral and systemic routes of drug administration. However, the formulation of dry powder for pulmonary delivery is often challenging due to restrictions on aerodynamic size and the lung’s lower tolerance capacity in comparison with an oral route of drug administration. Various physicochemical properties of dry powder play a major role in the aerosolization, deposition, and clearance along the respiratory tract. To prepare suitable particles with optimal physicochemical properties for inhalation, various manufacturing methods have been established. The most frequently used industrial methods are milling and spray-drying, while several other alternative methods such as spray-freeze-drying, supercritical fluid, non-wetting templates, inkjet-printing, thin-film freezing, and hot-melt extrusion methods are also utilized. The aim of this review is to provide an overview of the respiratory tract structure, particle deposition patterns, and possible drug-clearance mechanisms from the lungs. This review also includes the physicochemical properties of dry powder, various techniques used for the preparation of dry powders, and factors affecting the clinical efficacy, as well as various challenges that need to be addressed in the future.

          Related collections

          Most cited references229

          • Record: found
          • Abstract: found
          • Article: not found

          What the pulmonary specialist should know about the new inhalation therapies.

          A collaboration of multidisciplinary experts on the delivery of pharmaceutical aerosols was facilitated by the European Respiratory Society (ERS) and the International Society for Aerosols in Medicine (ISAM), in order to draw up a consensus statement with clear, up-to-date recommendations that enable the pulmonary physician to choose the type of aerosol delivery device that is most suitable for their patient. The focus of the consensus statement is the patient-use aspect of the aerosol delivery devices that are currently available. The subject was divided into different topics, which were in turn assigned to at least two experts. The authors searched the literature according to their own strategies, with no central literature review being performed. To achieve consensus, draft reports and recommendations were reviewed and voted on by the entire panel. Specific recommendations for use of the devices can be found throughout the statement. Healthcare providers should ensure that their patients can and will use these devices correctly. This requires that the clinician: is aware of the devices that are currently available to deliver the prescribed drugs; knows the various techniques that are appropriate for each device; is able to evaluate the patient's inhalation technique to be sure they are using the devices properly; and ensures that the inhalation method is appropriate for each patient.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticles for drug delivery to the lungs.

            The lungs are an attractive route for non-invasive drug delivery with advantages for both systemic and local applications. Incorporating therapeutics with polymeric nanoparticles offers additional degrees of manipulation for delivery systems, providing sustained release and the ability to target specific cells and organs. However, nanoparticle delivery to the lungs has many challenges including formulation instability due to particle-particle interactions and poor delivery efficiency due to exhalation of low-inertia nanoparticles. Thus, novel methods formulating nanoparticles into the form of micron-scale dry powders have been developed. These carrier particles exhibit improved handling and delivery, while releasing nanoparticles upon deposition in the lungs. This review covers the development of nanoparticle formulations for pulmonary delivery as both individual nanoparticles and encapsulated within carrier particles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regional lung deposition and bronchodilator response as a function of beta2-agonist particle size.

              Aerosol particle size influences the extent, distribution, and site of inhaled drug deposition within the airways. We hypothesized that targeting albuterol to regional airways by altering aerosol particle size could optimize inhaled bronchodilator delivery. In a randomized, double-blind, placebo-controlled study, 12 subjects with asthma (FEV1, 76.8 +/- 11.4% predicted) inhaled technetium-99m-labeled monodisperse albuterol aerosols (30-microg dose) of 1.5-, 3-, and 6-microm mass median aerodynamic diameter, at slow (30-60 L/min) and fast (> 60 L/min) inspiratory flows. Lung and extrathoracic radioaerosol deposition were quantified using planar gamma-scintigraphy. Pulmonary function and tolerability measurements were simultaneously assessed. Clinical efficacy was also compared with unlabeled monodisperse albuterol (15-microg dose) and 200 microg metered-dose inhaler (MDI) albuterol. Smaller particles achieved greater total lung deposition (1.5 microm [56%], 3 microm [50%], and 6 microm [46%]), farther distal airways penetration (0.79, 0.60, and 0.36, respective penetration index), and more peripheral lung deposition (25, 17, and 10%, respectively). However, larger particles (30-microg dose) were more efficacious and achieved greater bronchodilation than 200 microg MDI albuterol (deltaFEV1 [ml]: 6 microm [551], 3 microm [457], 1.5 microm [347], MDI [494]). Small particles were exhaled more (1.5 microm [22%], 3 microm [8%], 6 microm [2%]), whereas greater oropharyngeal deposition occurred with large particles (15, 31, and 43%, respectively). Faster inspiratory flows decreased total lung deposition and increased oropharyngeal deposition for the larger particles, with less bronchodilation. A shift in aerosol distribution to the proximal airways was observed for all particles. Regional targeting of inhaled beta2-agonist to the proximal airways is more important than distal alveolar deposition for bronchodilation. Altering intrapulmonary deposition through aerosol particle size can appreciably enhance inhaled drug therapy and may have implications for developing future inhaled treatments.
                Bookmark

                Author and article information

                Journal
                Pharmaceutics
                Pharmaceutics
                pharmaceutics
                Pharmaceutics
                MDPI
                1999-4923
                28 December 2020
                January 2021
                : 13
                : 1
                : 31
                Affiliations
                [1 ]Program for Lung and Vascular Biology, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; bchaurasiya@ 123456luriechildrens.org
                [2 ]Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
                [3 ]Department of Pharmacology, and Department of Medicine (Division of Pulmonary and Critical Care Division), Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
                [4 ]Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
                Author notes
                [* ]Correspondence: youyang.zhao@ 123456northwestern.edu ; Tel.: +1-(312)-503-7593
                Article
                pharmaceutics-13-00031
                10.3390/pharmaceutics13010031
                7824629
                33379136
                27800464-4d8b-4108-a84a-30933459909c
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 November 2020
                : 17 December 2020
                Categories
                Review

                respiratory architecture,dry powder formulation,physicochemical properties,clinical factors,pulmonary medicines

                Comments

                Comment on this article