7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Miracula moenusica, a new member of the holocarpic parasitoid genus from the invasive freshwater diatom Pleurosira laevis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Holocarpic oomycetes are poorly known but widespread parasites in freshwater and marine ecosystems. Most of the holocarpic species seem to belong to clades that diverge before the two crown lineages of the oomycetes, the Saprolegniomycetes and the Peronosporomycetes. Recently, the genus Miracula was described to accommodate Miracula helgolandica, a holocarpic parasitoid of Pseudo-nitzschia diatoms, which received varying support for its placement as the earliest-diverging oomycete lineage. In the same phylogenetic reconstruction, Miracula helgolandica was grouped with some somewhat divergent sequences derived from environmental sequencing, indicating that Miracula would not remain monotypic. Here, a second species of Miracula is reported, which was found as a parasitoid in the limnic centric diatom Pleurosira leavis. Its life-cycle stages are described and depicted in this study and its phylogenetic placement in the genus Miracula revealed. As a consequence, the newly discovered species is introduced as Miracula moenusica.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems.

          Although the number of studies on invasive plants and animals has risen exponentially, little is known about invasive microbes, especially non-pathogenic ones. Microbial invasions by viruses, bacteria, fungi and protists occur worldwide but are much harder to detect than invasions by macroorganisms. Invasive microbes have the potential to significantly alter community structure and ecosystem functioning in diverse terrestrial and aquatic ecosystems. Consequently, increased attention is needed on non-pathogenic invasive microbes, both free-living and symbiotic, and their impacts on communities and ecosystems. Major unknowns include the characteristics that make microbes invasive and properties of the resident communities and the environment that facilitate invasions. A comparison of microbial invasions with invasions of macroorganisms should provide valuable insights into general principles that apply to invasions across all domains of life and to taxon-specific invasion patterns. Invasive microbes appear to possess traits thought to be common in many invasive macroorganisms: high growth rate and resource utilization efficiency, and superior competitive abilities. Invading microorganisms are often similar to native species, but with enhanced performance traits, and tend to spread in lower diversity communities. Global change can exacerbate microbial invasions; therefore, they will likely increase in the future. © 2010 Blackwell Publishing Ltd/CNRS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Optimal Eukaryotic 18S and Universal 16S/18S Ribosomal RNA Primers and Their Application in a Study of Symbiosis

            Eukaryotic 18S ribosomal RNA (rRNA) gene primers that feature a wide coverage are critical in detecting the composition of eukaryotic microscopic organisms in ecosystems. Here, we predicted 18S rRNA primers based on consecutive conserved sites and evaluated their coverage efficiency and scope of application to different eukaryotic groups. After evaluation, eight of them were considered as qualified 18S primers based on coverage rate. Next, we examined common conserved regions in prokaryotic 16S and eukaryotic 18S rRNA sequences to design 16S/18S universal primers. Three 16S/18S candidate primers, U515, U1390 and U1492, were then considered to be suitable for simultaneous amplification of the rRNA sequences in three domains. Eukaryotic 18S and prokaryotic 16S rRNA genes in a sponge were amplified simultaneously using universal primers U515 and U1390, and the subsequent sorting of pyrosequenced reads revealed some distinctive communities in different parts of the sample. The real difference in biodiversity between prokaryotic and eukaryotic symbionts could be discerned as the dissimilarity between OTUs was increased from 0.005 to 0.1. A network of the communities in external and internal parts of the sponge illustrated the co-variation of some unique microbes in certain parts of the sponge, suggesting that the universal primers are useful in simultaneous detection of prokaryotic and eukaryotic microbial communities.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Phylogeny of the genus Pythium and description of new genera

                Bookmark

                Author and article information

                Journal
                Fungal Syst Evol
                Fungal Syst Evol
                FUSE
                Fungal Systematics and Evolution
                Westerdijk Fungal Biodiversity Institute
                2589-3823
                2589-3831
                14 January 2019
                June 2019
                : 3
                : 35-40
                Affiliations
                [1 ]Goethe University, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, D-60486 Frankfurt am Main, Germany
                [2 ]Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
                Author notes
                *Corresponding author: m.thines@ 123456thines-lab.eu
                Article
                10.3114/fuse.2019.03.04
                7252423
                32478313
                26ee73d3-76d5-4c30-bd36-32013f8b8fb7
                © 2019 Westerdijk Fungal Biodiversity Institute

                Fungal Systematics and Evolution is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

                History
                Categories
                Article

                diatom parasites,holocarpic oomycetes,life-cycle,phylogeny,taxonomy

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content242

                Cited by8

                Most referenced authors538