1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Application of Human Stem Cell Derived Retinal Organoids in the Exploration of the Mechanisms of Early Retinal Development

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: found
          • Article: not found

          Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling

          Current neural induction protocols in human ES cells (hESCs) rely on embryoid body formation, stromal feeder co-culture, or selective survival conditions; each strategy displaying significant drawbacks such as poorly defined culture conditions, protracted differentiation and low yield. Here we report that the synergistic action of two inhibitors of SMAD signaling, Noggin and SB431542, is sufficient for inducing rapid and complete neural conversion of hESCs under adherent culture conditions. Temporal fate analysis reveals a transient FGF5+ epiblast-like stage followed by PAX6+ neural cells competent of rosette formation. Initial cell density determines the ratio of CNS versus neural crest progeny. Directed differentiation of human iPSCs into midbrain dopamine and spinal motoneurons confirm robustness and general applicability of the novel induction protocol. Noggin/SB431542 based neural induction should greatly facilitate the use of hESC and hiPSCs in regenerative medicine and disease modeling and obviate the need for stromal feeder or embryoid body based protocols.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An in vivo model of functional and vascularized human brain organoids

            Differentiation of human pluripotent stem cells to small brain-like structures known as brain organoids offers an unprecedented opportunity to model human brain development and disease. To provide a vascularized and functional in vivo model of brain organoids, we established a method for transplanting human brain organoids into the adult mouse brain. Organoid grafts showed progressive neuronal differentiation and maturation, gliogenesis, integration of microglia, and growth of axons to multiple regions of the host brain. In vivo two-photon imaging demonstrated functional neuronal networks and blood vessels in the grafts. Finally, in vivo extracellular recording combined with optogenetics revealed intragraft neuronal activity and suggested graft-to-host functional synaptic connectivity. This combination of human neural organoids and an in vivo physiological environment in the animal brain may facilitate disease modeling under physiological conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-organizing optic-cup morphogenesis in three-dimensional culture.

              Balanced organogenesis requires the orchestration of multiple cellular interactions to create the collective cell behaviours that progressively shape developing tissues. It is currently unclear how individual, localized parts are able to coordinate with each other to develop a whole organ shape. Here we report the dynamic, autonomous formation of the optic cup (retinal primordium) structure from a three-dimensional culture of mouse embryonic stem cell aggregates. Embryonic-stem-cell-derived retinal epithelium spontaneously formed hemispherical epithelial vesicles that became patterned along their proximal-distal axis. Whereas the proximal portion differentiated into mechanically rigid pigment epithelium, the flexible distal portion progressively folded inward to form a shape reminiscent of the embryonic optic cup, exhibited interkinetic nuclear migration and generated stratified neural retinal tissue, as seen in vivo. We demonstrate that optic-cup morphogenesis in this simple cell culture depends on an intrinsic self-organizing program involving stepwise and domain-specific regulation of local epithelial properties. ©2011 Macmillan Publishers Limited. All rights reserved
                Bookmark

                Author and article information

                Contributors
                Journal
                Stem Cell Reviews and Reports
                Stem Cell Rev and Rep
                Springer Science and Business Media LLC
                2629-3269
                2629-3277
                August 2023
                June 03 2023
                August 2023
                : 19
                : 6
                : 1755-1772
                Article
                10.1007/s12015-023-10553-x
                26b05658-ae57-4499-9090-7274e718cad3
                © 2023

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article