19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mission Overview and Scientific Contributions from the Mars Science Laboratory Curiosity Rover After Eight Years of Surface Operations

      review-article
      Space Science Reviews
      Springer Netherlands
      Mars, Astrobiology, Geology, Meteorology, Climate, Planets

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          NASA’s Mars Science Laboratory mission, with its Curiosity rover, has been exploring Gale crater (5.4° S, 137.8° E) since 2012 with the goal of assessing the potential of Mars to support life. The mission has compiled compelling evidence that the crater basin accumulated sediment transported by marginal rivers into lakes that likely persisted for millions of years approximately 3.6 Ga ago in the early Hesperian. Geochemical and mineralogical assessments indicate that environmental conditions within this timeframe would have been suitable for sustaining life, if it ever were present. Fluids simultaneously circulated in the subsurface and likely existed through the dry phases of lake bed exposure and aeolian deposition, conceivably creating a continuously habitable subsurface environment that persisted to less than 3 Ga in the early Amazonian. A diversity of organic molecules has been preserved, though degraded, with evidence for more complex precursors. Solid samples show highly variable isotopic abundances of sulfur, chlorine, and carbon. In situ studies of modern wind-driven sediment transport and multiple large and active aeolian deposits have led to advances in understanding bedform development and the initiation of saltation. Investigation of the modern atmosphere and environment has improved constraints on the timing and magnitude of atmospheric loss, revealed the presence of methane and the crater’s influence on local meteorology, and provided measurements of high-energy radiation at Mars’ surface in preparation for future crewed missions. Rover systems and science instruments remain capable of addressing all key scientific objectives. Emphases on advance planning, flexibility, operations support work, and team culture have allowed the mission team to maintain a high level of productivity in spite of declining rover power and funding.

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s11214-022-00882-7.

          Related collections

          Most cited references258

          • Record: found
          • Abstract: found
          • Article: not found

          Global mineralogical and aqueous mars history derived from OMEGA/Mars Express data.

          Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the "phyllocian" era) are found in the oldest terrains; sulfates were formed in a second era (the "theiikian" era) in an acidic environment. Beginning about 3.5 billion years ago, the last era (the "siderikian") is dominated by the formation of anhydrous ferric oxides in a slow superficial weathering, without liquid water playing a major role across the planet.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars.

            The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars

              The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).
                Bookmark

                Author and article information

                Contributors
                ashwin.r.vasavada@jpl.nasa.gov
                Journal
                Space Sci Rev
                Space Sci Rev
                Space Science Reviews
                Springer Netherlands (Dordrecht )
                0038-6308
                1572-9672
                5 April 2022
                5 April 2022
                2022
                : 218
                : 3
                : 14
                Affiliations
                GRID grid.20861.3d, ISNI 0000000107068890, Jet Propulsion Laboratory, , California Institute of Technology, ; Pasadena, CA USA
                Author information
                http://orcid.org/0000-0003-2665-286X
                Article
                882
                10.1007/s11214-022-00882-7
                8981195
                35399614
                26360862-1fa2-4820-9e97-5514388acb3a
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 March 2021
                : 21 March 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000104, National Aeronautics and Space Administration;
                Award ID: Mars Science Laboratory project
                Categories
                Article
                Custom metadata
                © Springer Nature B.V. 2022

                mars,astrobiology,geology,meteorology,climate,planets
                mars, astrobiology, geology, meteorology, climate, planets

                Comments

                Comment on this article