16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Privacy-Preserving Federated Learning Framework with General Aggregation and Multiparty Entity Matching

      1 , 2 , 1 , 2 , 1 , 2
      Wireless Communications and Mobile Computing
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The requirement for data sharing and privacy has brought increasing attention to federated learning. However, the existing aggregation models are too specialized and deal less with users’ withdrawal issue. Moreover, protocols for multiparty entity matching are rarely covered. Thus, there is no systematic framework to perform federated learning tasks. In this paper, we systematically propose a privacy-preserving federated learning framework (PFLF) where we first construct a general secure aggregation model in federated learning scenarios by combining the Shamir secret sharing with homomorphic cryptography to ensure that the aggregated value can be decrypted correctly only when the number of participants is greater than t . Furthermore, we propose a multiparty entity matching protocol by employing secure multiparty computing to solve the entity alignment problems and a logistic regression algorithm to achieve privacy-preserving model training and support the withdrawal of users in vertical federated learning (VFL) scenarios. Finally, the security analyses prove that PFLF preserves the data privacy in the honest-but-curious model, and the experimental evaluations show PFLF attains consistent accuracy with the original model and demonstrates the practical feasibility.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Mastering the game of Go with deep neural networks and tree search.

          The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses 'value networks' to evaluate board positions and 'policy networks' to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Federated Machine Learning: Concept and Applications

              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Practical Secure Aggregation for Privacy-Preserving Machine Learning

                Bookmark

                Author and article information

                Contributors
                Journal
                Wireless Communications and Mobile Computing
                Wireless Communications and Mobile Computing
                Hindawi Limited
                1530-8677
                1530-8669
                June 26 2021
                June 26 2021
                : 2021
                : 1-14
                Affiliations
                [1 ]State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
                [2 ]Institute of Cryptography and Data Security, Guizhou University, Guiyang 550025, China
                Article
                10.1155/2021/6692061
                255ea74f-9e66-4b8e-8876-2ba593e24b2b
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article