14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Molecular Basis for the Progeroid Variant of Ehlers-Danlos Syndrome : IDENTIFICATION AND CHARACTERIZATION OF TWO MUTATIONS IN GALACTOSYLTRANSFERASE I GENE

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          The role of proteoglycans in cell adhesion, migration and proliferation.

          Proteoglycans comprise a part of the extracellular matrix that participates in the molecular events that regulate cell adhesion, migration and proliferation. Their structural diversity and tissue distribution suggest a functional versatility not generally encountered for other extracellular matrix components. This versatility is mainly dictated by their molecular interactions and their ability to regulate the activity of key molecules involved in several biological events. This molecular cooperativity either promotes or inhibits cell adhesion, migration and proliferation. A growing number of studies indicate that proteoglycans can play a direct role in these cellular events by functioning either as receptors or as ligands for molecules that are required for these events to occur. Such studies support a role for proteoglycans as important effectors of cellular processes that constitute the basis of development and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome.

            A small proteoglycan that contains only a single dermatan sulfate chain is the main proteoglycan synthesized by skin fibroblasts. Fibroblasts from a patient with progeroidal appearance and symptoms of the Ehlers-Danlos syndrome have a reduced ability of converting the core protein of this proteoglycan into a mature glycosaminoglycan chain-bearing species. This abnormality is the consequence of a deficiency in galactosyltransferase I (xylosylprotein 4-beta-galactosyltransferase; EC 2.4.1.133), which catalyzes the second glycosyl transfer reaction in the assembly of the dermatan sulfate chain. The glycosaminoglycan-free core protein secreted by the patient's fibroblasts bears an unsubstituted xylose residue. The mutant enzyme is abnormally thermolabile. Preincubation of fibroblasts at 41 degrees C leads to a further reduction in the production of mature proteoglycan and affects the capacity for glycosaminoglycan synthesis on p-nitrophenyl beta-D-xyloside more strongly in the mutant than in control cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human homolog of Caenorhabditis elegans sqv-3 gene is galactosyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans.

              A cDNA encoding a novel galactosyltransferase was identified based on BLAST analysis of expressed sequence tags, and the cDNA clones were isolated from a human melanoma line library. The new cDNA sequence encoded a type II membrane protein with 327 amino acid sequence and showed 38% homology to the Caenorhabditis elegans sqv-3 gene involved in the vulval invagination and oocyte development. Extracts from L cells transfected with the galactosyltransferase cDNA in an expression vector and a fusion protein with protein A exhibited marked galactosyltransferase activity specific for p-nitrophenyl-beta-D-xylopyranoside. Moreover, transfection with the cloned cDNA restored glycosaminoglycan synthesis of galactosyltransferase I-deficient Chinese hamster ovary mutant pgsB-761 cells. Analysis of the enzyme product by beta-galactosidase digestion, mass spectroscopy, and NMR spectroscopy revealed that the reaction product was formed via beta-1,4 linkage, indicating that the enzyme is galactosyltransferase I (UDP-galactose:O-beta-D-xylosylprotein 4-beta-D-galactosyltransferase, EC 2.4.1.133) involved in the synthesis of the glycosaminoglycan-protein linkage region of proteoglycans.
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                October 08 1999
                October 08 1999
                : 274
                : 41
                : 28841-28844
                Article
                10.1074/jbc.274.41.28841
                24cfb3f1-cdd2-4363-ae0c-989d48e5334a
                © 1999
                History

                Comments

                Comment on this article