13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Safety and immunogenicity of SARS-CoV-2 vaccine MVC-COV1901 in Taiwanese adolescents: a randomized phase 2 trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adolescents and children play an important role in SARS-CoV-2 transmission and epidemiology. MVC-COV1901 is a subunit SARS-CoV-2 vaccine based on stabilized spike protein adjuvanted with CpG 1018 and aluminum hydroxide that has received emergency use approval (EUA) for adults in Taiwan. In this study, we have investigated the safety and immunogenicity of two doses of MVC-COV1901 in adolescents. Healthy adolescents from the age of 12–17 years were randomly assigned to receive two intramuscular doses of either MVC-COV1901 or placebo at 28 days apart. Adverse events were mostly mild and were similar in MVC-COV1901 and placebo groups, with the most commonly reported adverse events being pain/tenderness and malaise/fatigue. All immunogenicity endpoints in the adolescent group were non-inferior to the endpoints seen in the young adult and placebo groups. The results here advocate the use of MVC-COV1901 in adolescents in the ongoing efforts to control the pandemic.

          ClinicalTrials.gov registration: NCT04951388.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A pneumonia outbreak associated with a new coronavirus of probable bat origin

          Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection

            Predictive models of immune protection from COVID-19 are urgently needed to identify correlates of protection to assist in the future deployment of vaccines. To address this, we analyzed the relationship between in vitro neutralization levels and the observed protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using data from seven current vaccines and from convalescent cohorts. We estimated the neutralization level for 50% protection against detectable SARS-CoV-2 infection to be 20.2% of the mean convalescent level (95% confidence interval (CI) = 14.4-28.4%). The estimated neutralization level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level; 95% CI = 0.7-13%, P = 0.0004). Modeling of the decay of the neutralization titer over the first 250 d after immunization predicts that a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. Neutralization titers against some SARS-CoV-2 variants of concern are reduced compared with the vaccine strain, and our model predicts the relationship between neutralization and efficacy against viral variants. Here, we show that neutralization level is highly predictive of immune protection, and provide an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Considerable escape of SARS-CoV-2 Omicron to antibody neutralization

              The SARS-CoV-2 Omicron variant was first identified in November 2021 in Botswana and South Africa1-3. It has since spread to many countries and is expected to rapidly become dominant worldwide. The lineage is characterized by the presence of around 32 mutations in spike-located mostly in the N-terminal domain and the receptor-binding domain-that may enhance viral fitness and enable antibody evasion. Here we isolated an infectious Omicron virus in Belgium from a traveller returning from Egypt. We examined its sensitivity to nine monoclonal antibodies that have been clinically approved or are in development4, and to antibodies present in 115 serum samples from COVID-19 vaccine recipients or individuals who have recovered from COVID-19. Omicron was completely or partially resistant to neutralization by all monoclonal antibodies tested. Sera from recipients of the Pfizer or AstraZeneca vaccine, sampled five months after complete vaccination, barely inhibited Omicron. Sera from COVID-19-convalescent patients collected 6 or 12 months after symptoms displayed low or no neutralizing activity against Omicron. Administration of a booster Pfizer dose as well as vaccination of previously infected individuals generated an anti-Omicron neutralizing response, with titres 6-fold to 23-fold lower against Omicron compared with those against Delta. Thus, Omicron escapes most therapeutic monoclonal antibodies and, to a large extent, vaccine-elicited antibodies. However, Omicron is neutralized by antibodies generated by a booster vaccine dose.
                Bookmark

                Author and article information

                Contributors
                charles@medigenvac.com
                lmhuang@ntu.edu.tw
                Journal
                NPJ Vaccines
                NPJ Vaccines
                NPJ Vaccines
                Nature Publishing Group UK (London )
                2059-0105
                16 December 2022
                16 December 2022
                2022
                : 7
                : 165
                Affiliations
                [1 ]Medigen Vaccine Biologics Corporation, Taipei, Taiwan
                [2 ]GRID grid.145695.a, ISNI 0000 0004 1798 0922, Department of Pediatrics, Chang Gung Children’s Hospital, , Chang Gung University College of Medicine, ; Taoyuan City, Taiwan
                [3 ]Department of Pediatrics, MacKay Children’s Hospital, Taipei City, Taiwan
                [4 ]GRID grid.412094.a, ISNI 0000 0004 0572 7815, Department of Pediatrics, , National Taiwan University Hospital Hsinchu Branch, ; Hsinchu County, Taiwan
                [5 ]GRID grid.413593.9, ISNI 0000 0004 0573 007X, Department of Pediatrics, , Hsinchu MacKay Memorial Hospital, ; Hsinchu City, Taiwan
                [6 ]GRID grid.260539.b, ISNI 0000 0001 2059 7017, Institute of Public Health, , National Yang-Ming Chiao Tung University, ; Taipei City, Taiwan
                [7 ]GRID grid.19188.39, ISNI 0000 0004 0546 0241, Department of Pediatrics, National Taiwan University Hospital and College of Medicine, , National Taiwan University, ; Taipei, Taiwan
                Author information
                http://orcid.org/0000-0002-8547-9860
                http://orcid.org/0000-0001-6888-009X
                http://orcid.org/0000-0002-9291-260X
                Article
                589
                10.1038/s41541-022-00589-4
                9755761
                36526640
                2484b7a8-e849-4a71-895a-703253fd8f7c
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 March 2022
                : 5 December 2022
                Funding
                Funded by: Taiwan Centers for Disease Control
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                viral infection,recombinant vaccine,protein vaccines

                Comments

                Comment on this article