22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Supply-chain networks: a complex adaptive systems perspective

      , , ,
      International Journal of Production Research
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Statistical mechanics of complex networks

          Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, we discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, as well as the interplay between topology and the network's robustness against failures and attacks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Error and attack tolerance of complex networks

            Many complex systems, such as communication networks, display a surprising degree of robustness: while key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. In this paper we demonstrate that error tolerance is not shared by all redundant systems, but it is displayed only by a class of inhomogeneously wired networks, called scale-free networks. We find that scale-free networks, describing a number of systems, such as the World Wide Web, Internet, social networks or a cell, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected by even unrealistically high failure rates. However, error tolerance comes at a high price: these networks are extremely vulnerable to attacks, i.e. to the selection and removal of a few nodes that play the most important role in assuring the network's connectivity.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Independent coordinates for strange attractors from mutual information

                Bookmark

                Author and article information

                Journal
                International Journal of Production Research
                International Journal of Production Research
                Informa UK Limited
                0020-7543
                1366-588X
                October 15 2005
                October 15 2005
                : 43
                : 20
                : 4235-4265
                Article
                10.1080/00207540500142274
                23839848-e020-49ad-bc37-253b5afd47fb
                © 2005
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,710

                Cited by95

                Most referenced authors2,067