2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epigenetic clock analysis of blood samples in drug-naive first-episode schizophrenia patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Schizophrenia (SCZ) is a severe and chronic psychiatric disorder with premature age-related physiological changes. However, numerous previous studies examined the epigenetic age acceleration in SCZ patients and yielded inconclusive results. In this study, we propose to explore the epigenetic age acceleration in drug-naive first-episode SCZ (FSCZ) patients and investigate whether epigenetic age acceleration is associated with antipsychotic treatment, psychotic symptoms, cognition, and subcortical volumes.

          Methods

          We assessed the epigenetic age in 38 drug-naive FSCZ patients and 38 healthy controls by using three independent clocks, including Horvath, Hannum and Levine algorithms. The epigenetic age measurements in SCZ patients were repeated after receiving 8 weeks risperidone monotherapy.

          Results

          Our findings showed significantly positive correlations between epigenetic ages assessed by three clocks and chronological age in both FSCZ patients and healthy controls. Compared with healthy controls, drug-naive FSCZ patients have a significant epigenetic age deceleration in Horvath clock ( p = 0.01), but not in Hannum clock ( p = 0.07) and Levine clock ( p = 0.43). The epigenetic ages of Hannum clock ( p = 0.002) and Levine clock ( p = 0.01) were significantly accelerated in SCZ patients after 8-week risperidone treatment. However, no significant associations between epigenetic age acceleration and psychotic symptoms, cognitive function, as well as subcortical volumes were observed in FSCZ patients.

          Conclusion

          These results demonstrate that distinct epigenetic clocks are sensitive to different aspects of aging process. Further investigations with comprehensive epigenetic clock analyses and large samples are required to confirm our findings.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12888-023-04533-1.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

          Summary Background As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016. Methods We estimated prevalence and incidence for 328 diseases and injuries and 2982 sequelae, their non-fatal consequences. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between incidence, prevalence, remission, and cause of death rates for each condition. For some causes, we used alternative modelling strategies if incidence or prevalence needed to be derived from other data. YLDs were estimated as the product of prevalence and a disability weight for all mutually exclusive sequelae, corrected for comorbidity and aggregated to cause level. We updated the Socio-demographic Index (SDI), a summary indicator of income per capita, years of schooling, and total fertility rate. GBD 2016 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, low back pain, migraine, age-related and other hearing loss, iron-deficiency anaemia, and major depressive disorder were the five leading causes of YLDs in 2016, contributing 57·6 million (95% uncertainty interval [UI] 40·8–75·9 million [7·2%, 6·0–8·3]), 45·1 million (29·0–62·8 million [5·6%, 4·0–7·2]), 36·3 million (25·3–50·9 million [4·5%, 3·8–5·3]), 34·7 million (23·0–49·6 million [4·3%, 3·5–5·2]), and 34·1 million (23·5–46·0 million [4·2%, 3·2–5·3]) of total YLDs, respectively. Age-standardised rates of YLDs for all causes combined decreased between 1990 and 2016 by 2·7% (95% UI 2·3–3·1). Despite mostly stagnant age-standardised rates, the absolute number of YLDs from non-communicable diseases has been growing rapidly across all SDI quintiles, partly because of population growth, but also the ageing of populations. The largest absolute increases in total numbers of YLDs globally were between the ages of 40 and 69 years. Age-standardised YLD rates for all conditions combined were 10·4% (95% UI 9·0–11·8) higher in women than in men. Iron-deficiency anaemia, migraine, Alzheimer’s disease and other dementias, major depressive disorder, anxiety, and all musculoskeletal disorders apart from gout were the main conditions contributing to higher YLD rates in women. Men had higher age-standardised rates of substance use disorders, diabetes, cardiovascular diseases, cancers, and all injuries apart from sexual violence. Globally, we noted much less geographical variation in disability than has been documented for premature mortality. In 2016, there was a less than two times difference in age-standardised YLD rates for all causes between the location with the lowest rate (China, 9201 YLDs per 100 000, 95% UI 6862–11943) and highest rate (Yemen, 14 774 YLDs per 100 000, 11 018–19 228). Interpretation The decrease in death rates since 1990 for most causes has not been matched by a similar decline in age-standardised YLD rates. For many large causes, YLD rates have either been stagnant or have increased for some causes, such as diabetes. As populations are ageing, and the prevalence of disabling disease generally increases steeply with age, health systems will face increasing demand for services that are generally costlier than the interventions that have led to declines in mortality in childhood or for the major causes of mortality in adults. Up-to-date information about the trends of disease and how this varies between countries is essential to plan for an adequate health-system response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA methylation age of human tissues and cell types

            Background It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. Results I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. Conclusions I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              An epigenetic biomarker of aging for lifespan and healthspan

              Identifying reliable biomarkers of aging is a major goal in geroscience. While the first generation of epigenetic biomarkers of aging were developed using chronological age as a surrogate for biological age, we hypothesized that incorporation of composite clinical measures of phenotypic age that capture differences in lifespan and healthspan may identify novel CpGs and facilitate the development of a more powerful epigenetic biomarker of aging. Using an innovative two-step process, we develop a new epigenetic biomarker of aging, DNAm PhenoAge, that strongly outperforms previous measures in regards to predictions for a variety of aging outcomes, including all-cause mortality, cancers, healthspan, physical functioning, and Alzheimer's disease. While this biomarker was developed using data from whole blood, it correlates strongly with age in every tissue and cell tested. Based on an in-depth transcriptional analysis in sorted cells, we find that increased epigenetic, relative to chronological age, is associated with increased activation of pro-inflammatory and interferon pathways, and decreased activation of transcriptional/translational machinery, DNA damage response, and mitochondrial signatures. Overall, this single epigenetic biomarker of aging is able to capture risks for an array of diverse outcomes across multiple tissues and cells, and provide insight into important pathways in aging.
                Bookmark

                Author and article information

                Contributors
                humaolin@whu.edu.cn
                chenxiaogang@csu.edu.cn
                Journal
                BMC Psychiatry
                BMC Psychiatry
                BMC Psychiatry
                BioMed Central (London )
                1471-244X
                17 January 2023
                17 January 2023
                2023
                : 23
                : 45
                Affiliations
                [1 ]GRID grid.216417.7, ISNI 0000 0001 0379 7164, Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, , Central South University, ; No 139 Renmin Road, Changsha, Hunan 410011 P. R. China
                [2 ]GRID grid.216417.7, ISNI 0000 0001 0379 7164, China National Technology Institute on Mental Disorders & Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of the Second Xiangya Hospital, , Central South University, ; Changsha, P. R. China
                [3 ]GRID grid.412632.0, ISNI 0000 0004 1758 2270, Department of Psychiatry, , Renmin Hospital of Wuhan University, ; Wuhan, P. R. China
                [4 ]GRID grid.13402.34, ISNI 0000 0004 1759 700X, Department of Psychiatry, Sir Run Run Shaw Hospital, , Zhejiang University School of Medicine, ; Hangzhou, P. R. China
                Article
                4533
                10.1186/s12888-023-04533-1
                9843886
                36650462
                228db5b5-0fa1-481b-a3ae-938d1f439e54
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 9 August 2022
                : 6 January 2023
                Categories
                Research
                Custom metadata
                © The Author(s) 2023

                Clinical Psychology & Psychiatry
                schizophrenia,dna methylation,epigenetic age,antipsychotic treatment

                Comments

                Comment on this article