2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessing, updating and utilising primary care smoking records for lung cancer screening

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Lung cancer screening with low-dose computed tomography for high-risk populations is being implemented in the UK. However, inclusive identification and invitation of the high-risk population is a major challenge for equitable lung screening implementation. Primary care electronic health records (EHRs) can be used to identify lung screening-eligible individuals based on age and smoking history, but the quality of EHR smoking data is limited. This study piloted a novel strategy for ascertaining smoking status in primary care and tested EHR search combinations to identify those potentially eligible for lung cancer screening.

          Methods

          Seven primary care General Practices in South Wales, UK were included. Practice-level data on missing tobacco codes in EHRs were obtained. To update patient EHRs with no tobacco code, we developed and tested an algorithm that sent a text message request to patients via their GP practice to update their smoking status. The patient’s response automatically updated their EHR with the relevant tobacco code. Four search strategies using different combinations of tobacco codes for the age range 55-74 + 364 were tested to estimate the likely impact on the potential lung screening-eligible population in Wales. Search strategies included: BROAD (wide range of ever smoking codes); VOLUME (wide range of ever-smoking codes excluding “trivial” former smoking); FOCUSED (cigarette-related tobacco codes only), and RECENT (current smoking within the last 20 years).

          Results

          Tobacco codes were not recorded for 3.3% of patients ( n = 724/21,956). Of those with no tobacco code and a validated mobile telephone number ( n = 333), 55% ( n = 183) responded via text message with their smoking status. Of the 183 patients who responded, 43.2% ( n = 79) had a history of smoking and were potentially eligible for lung cancer screening. Applying the BROAD search strategy was projected to result in an additional 148,522 patients eligible to receive an invitation for lung cancer screening when compared to the RECENT strategy.

          Conclusion

          An automated text message system could be used to improve the completeness of primary care EHR smoking data in preparation for rolling out a national lung cancer screening programme. Varying the search strategy for tobacco codes may have profound implications for the size of the population eligible for lung-screening invitation.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reduced lung-cancer mortality with low-dose computed tomographic screening.

            (2011)
            The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer. From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02). Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov number, NCT00047385.).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial

                Bookmark

                Author and article information

                Contributors
                mccutchanGM@cardiff.ac.uk
                Journal
                BMC Pulm Med
                BMC Pulm Med
                BMC Pulmonary Medicine
                BioMed Central (London )
                1471-2466
                16 November 2023
                16 November 2023
                2023
                : 23
                : 445
                Affiliations
                [1 ]Division of Population Medicine, School of Medicine, Cardiff University, ( https://ror.org/03kk7td41) Cardiff, Wales UK
                [2 ]Academic GP Fellows Scheme, Division of Population Medicine, School of Medicine, Cardiff University, ( https://ror.org/03kk7td41) Cardiff, Wales UK
                [3 ]Division of Health Sciences, Warwick Medical School, University of Warwick, ( https://ror.org/01a77tt86) Coventry, England UK
                [4 ]GRID grid.473458.9, ISNI 0000 0000 9162 8135, Wales Cancer Network, , NHS Wales Executive, ; Cardiff, UK
                Article
                2746
                10.1186/s12890-023-02746-4
                10655268
                37974137
                21b4368e-5f8d-4d17-ae73-c75dd33d1121
                © Crown 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 25 May 2023
                : 2 November 2023
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                Respiratory medicine
                lung cancer,lung cancer screening,low-dose ct,smoking,electronic healthcare records,primary care

                Comments

                Comment on this article