101
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human cerebral cortex develops through an elaborate succession of cellular events that, when disrupted, can lead to neuropsychiatric disease. The ability to reprogram somatic cells into pluripotent cells that can be differentiated in vitro provides a unique opportunity to study normal and abnormal corticogenesis. Here, we present a simple and reproducible 3D culture approach for generating a laminated cerebral cortex-like structure, named human cortical spheroids (hCSs), from pluripotent stem cells. hCSs contain neurons from both deep and superficial cortical layers and map transcriptionally to in vivo fetal development. These neurons are electrophysiologically mature, display spontaneous activity, are surrounded by nonreactive astrocytes and form functional synapses. Experiments in acute hCS slices demonstrate that cortical neurons participate in network activity and produce complex synaptic events. These 3D cultures should allow a detailed interrogation of human cortical development, function and disease, and may prove a versatile platform for generating other neuronal and glial subtypes in vitro.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells.

          Autism spectrum disorders (ASD) are complex neurodevelopmental diseases in which different combinations of genetic mutations may contribute to the phenotype. Using Rett syndrome (RTT) as an ASD genetic model, we developed a culture system using induced pluripotent stem cells (iPSCs) from RTT patients' fibroblasts. RTT patients' iPSCs are able to undergo X-inactivation and generate functional neurons. Neurons derived from RTT-iPSCs had fewer synapses, reduced spine density, smaller soma size, altered calcium signaling and electrophysiological defects when compared to controls. Our data uncovered early alterations in developing human RTT neurons. Finally, we used RTT neurons to test the effects of drugs in rescuing synaptic defects. Our data provide evidence of an unexplored developmental window, before disease onset, in RTT syndrome where potential therapies could be successfully employed. Our model recapitulates early stages of a human neurodevelopmental disease and represents a promising cellular tool for drug screening, diagnosis and personalized treatment. Copyright © 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis.

            Synapses are asymmetric cellular adhesions that are critical for nervous system development and function, but the mechanisms that induce their formation are not well understood. We have previously identified thrombospondin as an astrocyte-secreted protein that promotes central nervous system (CNS) synaptogenesis. Here, we identify the neuronal thrombospondin receptor involved in CNS synapse formation as alpha2delta-1, the receptor for the anti-epileptic and analgesic drug gabapentin. We show that the VWF-A domain of alpha2delta-1 interacts with the epidermal growth factor-like repeats common to all thrombospondins. alpha2delta-1 overexpression increases synaptogenesis in vitro and in vivo and is required postsynaptically for thrombospondin- and astrocyte-induced synapse formation in vitro. Gabapentin antagonizes thrombospondin binding to alpha2delta-1 and powerfully inhibits excitatory synapse formation in vitro and in vivo. These findings identify alpha2delta-1 as a receptor involved in excitatory synapse formation and suggest that gabapentin may function therapeutically by blocking new synapse formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex.

              Pyramidal neurons of the neocortex can be subdivided into two major groups: deep- (DL) and upper-layer (UL) neurons. Here we report that the expression of the AT-rich DNA-binding protein Satb2 defines two subclasses of UL neurons: UL1 (Satb2 positive) and UL2 (Satb2 negative). In the absence of Satb2, UL1 neurons lose their identity and activate DL- and UL2-specific genetic programs. UL1 neurons in Satb2 mutants fail to migrate to superficial layers and do not contribute to the corpus callosum but to the corticospinal tract, which is normally populated by DL axons. Ctip2, a gene required for the formation of the corticospinal tract, is ectopically expressed in all UL1 neurons in the absence of Satb2. Satb2 protein interacts with the Ctip2 genomic region and controls chromatin remodeling at this locus. Satb2 therefore is required for the initiation of the UL1-specific genetic program and for the inactivation of DL- and UL2-specific genes.
                Bookmark

                Author and article information

                Journal
                Nat. Methods
                Nature methods
                1548-7105
                1548-7091
                Jul 2015
                : 12
                : 7
                Affiliations
                [1 ] Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Stanford, California, USA.
                [2 ] Department of Neurobiology, Stanford University School of Medicine, Stanford, California, USA.
                [3 ] 1] Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, USA. [2] Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA. [3] Interdepartmental Ph.D. Program in Bioinformatics, University of California, Los Angeles, California, USA.
                [4 ] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.
                [5 ] Department of Psychiatry &Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, California, USA.
                [6 ] 1] Department of Pharmacology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea. [2] BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
                [7 ] Department of Molecular and Cellular Physiology, Beckman Center, Stanford University School of Medicine, Stanford, California, USA.
                [8 ] Department of Pathology, Blood Center, Stanford University School of Medicine, Stanford, California, USA.
                [9 ] 1] Department of Molecular and Cellular Physiology, Beckman Center, Stanford University School of Medicine, Stanford, California, USA. [2] Department of Synapse Biology, Allen Institute for Brain Science, Seattle, Washington, USA.
                Article
                nmeth.3415 NIHMS700658
                10.1038/nmeth.3415
                26005811
                218c2d50-9d8d-437d-a8b7-f4a0c6f87383
                History

                Comments

                Comment on this article