15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An mRNA Vaccine Encoding Rabies Virus Glycoprotein Induces Protection against Lethal Infection in Mice and Correlates of Protection in Adult and Newborn Pigs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rabies is a zoonotic infectious disease of the central nervous system (CNS). In unvaccinated or untreated subjects, rabies virus infection causes severe neurological symptoms and is invariably fatal. Despite the long-standing existence of effective vaccines, vaccine availability remains insufficient, with high numbers of fatal infections mostly in developing countries. Nucleic acid based vaccines have proven convincingly as a new technology for the fast development of vaccines against newly emerging pathogens, diseases where no vaccine exists or for replacing already existing vaccines. We used an optimized non-replicating rabies virus glycoprotein (RABV-G) encoding messenger RNA (mRNA) to induce potent neutralizing antibodies (VN titers) in mice and domestic pigs. Functional antibody titers were followed in mice for up to one year and titers remained stable for the entire observation period in all dose groups. T cell analysis revealed the induction of both, specific CD4+ as well as CD8+ T cells by RABV-G mRNA, with the induced CD4+ T cells being higher than those induced by a licensed vaccine. Notably, RABV-G mRNA vaccinated mice were protected against lethal intracerebral challenge infection. Inhibition of viral replication by vaccination was verified by qRT-PCR. Furthermore, we demonstrate that CD4+ T cells are crucial for the generation of neutralizing antibodies. In domestic pigs we were able to induce VN titers that correlate with protection in adult and newborn pigs. This study demonstrates the feasibility of a non-replicating mRNA rabies vaccine in small and large animals and highlights the promises of mRNA vaccines for the prevention of infectious diseases.

          Author Summary

          Although first successful vaccination against rabies virus infection was performed by Louis Pasteur in the 19 th century, every year about 50,000 patients, predominantly children, succumb to rabies infection because of insufficient availability of effective low-cost vaccines worldwide. The work presented here describes the protective capacity of such a vaccine candidate based on a non-replicating messenger RNA (mRNA). Here we highlight the efficacy of this type of vaccine in a highly fatal viral infection mouse model and demonstrate the induction of accepted correlates of protection in domestic pigs. The results extend and strengthen our previous work on mRNA-based vaccines protecting against Influenza. The data from Rabies and Influenza studies, together with the increased thermostability (manuscript in preparation) and the conceived cost-effectiveness of production suggest that non-replicating mRNA-based vaccines are an attractive and promising format for the development of protective vaccines against a wide range of infectious diseases.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Development of a fluorescent antibody virus neutralisation test (FAVN test) for the quantitation of rabies-neutralising antibody.

          A microtest named the FAVN test (fluorescent antibody virus neutralisation test), which is an adaptation of the original rapid fluorescent focus inhibition test (RFFIT) has been developed and evaluated. One hundred percent specificity was estimated using 414 sera from dogs sampled in rabies-free areas or from non-vaccinated animals. The accuracy as determined by the agreement between observed and expected values using sera of known titres was satisfactory. Serum samples from unvaccinated and vaccinated dogs (using sera with titres near 0.5 IU/ml) were assayed for rabies antibody by the FAVN test, the RFFIT and the mouse neutralisation test (MNT): comparative results obtained on the same sera with the three tests showed good agreement. Furthermore, distinguishing negative sera from positive sera with low titres is much easier with the FAVN test than with the RFFIT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies.

            To study the efficiency of RNA-based vaccines, RNA coding for the model antigen beta-galactosidase (beta-gal) was transcribed in vitro from a lacZ gene flanked by stabilizing Xenopus laevis beta-globin 5' and 3' sequences and was protected from RNase degradation by condensation with the polycationic peptide protamine. The liposome-encapsulated condensed RNA-peptide complex, the condensed RNA-peptide complex without liposome or naked, unprotected RNA, was injected into BALB/c (H-2(d)) mice. All preparations led to protein expression in the local tissue, activation of L(d)-restricted specific cytotoxic T lymphocytes (CTL) and production of IgG antibodies reactive against beta-gal. RNA-triggered CTL were as efficient in the lysis of lacZ-transfected target cells as CTL triggered by a lacZ-DNA eukaryotic expression vector. Immunization with RNA transcribed from a cDNA library from the beta-gal-expressing cell line P13.1 again led to beta-gal-specific CTL and IgG induction. Thus, both naked and protected RNA can be used to elicit a specific immune response in vivo, whereby the protected RNA is stable in vitro for a longer period of time. RNA vaccines can be produced in high amounts and have the same major advantages as DNA vaccines but lack the potentially harmful effect of DNA integration into the genome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human rabies: neuropathogenesis, diagnosis, and management.

              Rabies is an almost invariably fatal disease that can present as classic furious rabies or paralytic rabies. Recovery has been reported in only a few patients, most of whom were infected with bat rabies virus variants, and has been associated with promptness of host immune response and spontaneous (immune) virus clearance. Viral mechanisms that have evolved to minimise damage to the CNS but enable the virus to spread might explain why survivors have overall good functional recovery. The shorter survival of patients with furious rabies compared with those with paralytic rabies closely corresponds to the greater amount of virus and lower immune response in the CNS of patients with the furious form. Rabies virus is present in the CNS long before symptom onset: subclinical anterior horn cell dysfunction and abnormal brain MRI in patients with furious rabies are evident days before brain symptoms develop. How the virus produces its devastating effects and how it selectively impairs behaviour in patients with furious rabies and the peripheral nerves of patients with paralytic rabies is beginning to be understood. However, to develop a pragmatic treatment strategy, a thorough understanding of the neuropathogenetic mechanisms is needed. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                23 June 2016
                June 2016
                : 10
                : 6
                : e0004746
                Affiliations
                [1 ]CureVac AG, Tübingen, Germany
                [2 ]Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
                Wistar Institute, UNITED STATES
                Author notes

                I have read the journal's policy and the authors of this manuscript have the following competing interests: MS, DV, BP, PB and TK are or were employees of CureVac. Authors MS, TK, BP and LS are named as inventors on a patent application for a rabies vaccine filed by CureVac.

                Conceived and designed the experiments: MS ABV DV BP PB TK LS. Performed the experiments: MS ABV DV BP PB LS. Analyzed the data: MS ABV DV BP PB TK LS. Contributed reagents/materials/analysis tools: MS ABV DV BP PB TK LS. Wrote the paper: MS ABV DV BP PB TK LS.

                [¤a]

                Current Address: BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany

                [¤b]

                Current Address: Roche Pharma AG, Grenzach-Wyhlen, Germany

                [¤c]

                Current Address: Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany

                Article
                PNTD-D-15-02189
                10.1371/journal.pntd.0004746
                4918980
                27336830
                206b9ab3-ae3f-472c-923c-76e09b33f4ff
                © 2016 Schnee et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 January 2016
                : 6 May 2016
                Page count
                Figures: 6, Tables: 0, Pages: 20
                Funding
                Funded by: KMU-innovativ
                Award ID: 031A061C
                Award Recipient :
                Funded by: KMU-innovativ
                Award ID: 031A061A
                Award Recipient :
                Funded by: KMU-innovativ
                Award ID: 0315802
                Award Recipient :
                The work was supported by the followig KMU-innovativ grants: 0315802, 031A061A and 031A061C. KMU-innovativ is an Innovation Programme of the Bundes-Ministerium für Bildung und Forschung (BMBF; Germany) for SMEs (Website: https://www.bmbf.de/de/kmu-innovativ-561.html). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Immunology
                Vaccination and Immunization
                Vaccines
                Medicine and Health Sciences
                Immunology
                Vaccination and Immunization
                Vaccines
                Medicine and Health Sciences
                Public and Occupational Health
                Preventive Medicine
                Vaccination and Immunization
                Vaccines
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                T Cells
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                T Cells
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                T Cells
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                T Cells
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Lyssavirus
                Rabies Virus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Lyssavirus
                Rabies Virus
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Lyssavirus
                Rabies Virus
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Lyssavirus
                Rabies Virus
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Antibodies
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Antibodies
                Biology and Life Sciences
                Immunology
                Immune System Proteins
                Antibodies
                Medicine and Health Sciences
                Immunology
                Immune System Proteins
                Antibodies
                Biology and Life Sciences
                Biochemistry
                Proteins
                Immune System Proteins
                Antibodies
                Biology and Life Sciences
                Immunology
                Vaccination and Immunization
                Medicine and Health Sciences
                Immunology
                Vaccination and Immunization
                Medicine and Health Sciences
                Public and Occupational Health
                Preventive Medicine
                Vaccination and Immunization
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Messenger RNA
                Biology and Life Sciences
                Agriculture
                Livestock
                Swine
                Biology and Life Sciences
                Organisms
                Animals
                Vertebrates
                Amniotes
                Mammals
                Swine
                Biology and Life Sciences
                Immunology
                Vaccination and Immunization
                Vaccines
                Viral Vaccines
                Medicine and Health Sciences
                Immunology
                Vaccination and Immunization
                Vaccines
                Viral Vaccines
                Medicine and Health Sciences
                Public and Occupational Health
                Preventive Medicine
                Vaccination and Immunization
                Vaccines
                Viral Vaccines
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Vaccines
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article