7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic Value of miRNAs in Coronary Artery Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atherosclerotic ischemic coronary artery disease (CAD) is a significant community health challenge and the principal cause of morbidity and mortality in both developed and developing countries for all ethnic groups. The progressive chronic coronary atherosclerosis is the main underlying cause of CAD. Although enormous progress occurred in the last three decades in the management of cardiovascular diseases, the prevalence of CAD continues to increase worldwide, indicating the need for discovery of deeper molecular insights of CAD mechanisms, biomarkers, and innovative therapeutic targets. Recently, several research groups established that microRNAs essentially regulate various cardiovascular development and functions, and a deregulated cardiac enriched microRNA profile plays a vital role in the pathogenesis of CAD and its biological aging. Numerous studies established that over- or downregulation of a single miRNA gene by ago-miRNA or anti-miRNA is enough to modify the CAD disease process, significantly prevent age-dependent cardiac cell death, and markedly improve cardiac function. In the light of more recent experimental and clinical evidences, we briefly reviewed and discussed the involvement of miRNAs in CAD and their possible diagnostic/therapeutic values. Moreover, we also focused on the role of miRNAs in the initiation and progression of the atherosclerosis plaque as the strongest risk factor for CAD.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNAs: genomics, biogenesis, mechanism, and function.

          MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heart Disease and Stroke Statistics—2020 Update

            Circulation
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans.

              During C. elegans development, the temporal pattern of many cell lineages is specified by graded activity of the heterochronic gene Lin-14. Here we demonstrate that a temporal gradient in Lin-14 protein is generated posttranscriptionally by multiple elements in the lin-14 3'UTR that are regulated by the heterochronic gene Lin-4. The lin-14 3'UTR is both necessary and sufficient to confer lin-4-mediated posttranscriptional temporal regulation. The function of the lin-14 3'UTR is conserved between C. elegans and C. briggsae. Among the conserved sequences are seven elements that are each complementary to the lin-4 RNAs. A reporter gene bearing three of these elements shows partial temporal gradient activity. These data suggest a molecular mechanism for Lin-14p temporal gradient formation: the lin-4 RNAs base pair to sites in the lin-14 3'UTR to form multiple RNA duplexes that down-regulate lin-14 translation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2021
                12 April 2021
                : 2021
                : 8853748
                Affiliations
                1Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
                2Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
                3Department of Gynecology and Obstetrics, College of Medicine, Jouf University, Sakaka, Saudi Arabia
                4Department of Pharmacology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
                5Pharmacology Department, Faculty of Medicine, Beni-Suef University, Egypt
                6Cardiac Center, King Abdul Aziz Specialized Hospital, Sakaka, Saudi Arabia
                Author notes

                Academic Editor: Ana Lloret

                Author information
                https://orcid.org/0000-0001-7187-6550
                Article
                10.1155/2021/8853748
                8057887
                33953838
                1ff8223d-6c25-40f0-b2a4-2f26c0eead6d
                Copyright © 2021 Md Sayed Ali Sheikh et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 September 2020
                : 25 January 2021
                : 29 March 2021
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article