1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Modern Electroencephalographic Assessment Techniques 

      Metabolic Mapping of Astrocytes and Neurons in Culture Using Stable Isotopes and Gas Chromatography-Mass Spectrometry (GC-MS)

      other

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          PROTEIN MEASUREMENT WITH THE FOLIN PHENOL REAGENT

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1.

            Neurons are known to have a lower glycolytic rate than astrocytes and when stressed they are unable to upregulate glycolysis because of low Pfkfb3 (6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase-3) activity. This enzyme generates fructose-2,6-bisphosphate (F2,6P(2)), the most potent activator of 6-phosphofructo-1-kinase (Pfk1; ref. 4), a master regulator of glycolysis. Here, we show that Pfkfb3 is absent from neurons in the brain cortex and that Pfkfb3 in neurons is constantly subject to proteasomal degradation by the action of the E3 ubiquitin ligase, anaphase-promoting complex/cyclosome (APC/C)-Cdh1. By contrast, astrocytes have low APC/C-Cdh1 activity and therefore Pfkfb3 is present in these cells. Upregulation of Pfkfb3 by either inhibition of Cdh1 or overexpression of Pfkfb3 in neurons resulted in the activation of glycolysis. This, however, was accompanied by a marked decrease in the oxidation of glucose through the pentose phosphate pathway (a metabolic route involved in the regeneration of reduced glutathione) resulting in oxidative stress and apoptotic death. Thus, by actively downregulating glycolysis by APC/C-Cdh1, neurons use glucose to maintain their antioxidant status at the expense of its utilization for bioenergetic purposes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Glutamate uptake

                Bookmark

                Author and book information

                Book Chapter
                2014
                July 31 2014
                : 73-105
                10.1007/978-1-4939-1059-5_4
                1ee32cc8-1655-47a7-bc30-7265b3930364
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,552

                Cited by6