10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      THE LYMAN-CONTINUUM PHOTON PRODUCTION EFFICIENCYξIONOFz∼ 4–5 GALAXIES FROM IRAC-BASED HαMEASUREMENTS: IMPLICATIONS FOR THE ESCAPE FRACTION AND COSMIC REIONIZATION

      , , , , , , ,
      The Astrophysical Journal
      American Astronomical Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Stellar population synthesis at the resolution of 2003

          We present a new model for computing the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities. These predictions are based on a newly available library of observed stellar spectra. We also compute the spectral evolution across a larger wavelength range, from 91 A to 160 micron, at lower resolution. The model incorporates recent progress in stellar evolution theory and an observationally motivated prescription for thermally-pulsing stars on the asymptotic giant branch. The latter is supported by observations of surface brightness fluctuations in nearby stellar populations. We show that this model reproduces well the observed optical and near-infrared colour-magnitude diagrams of Galactic star clusters of various ages and metallicities. Stochastic fluctuations in the numbers of stars in different evolutionary phases can account for the full range of observed integrated colours of star clusters in the Magellanic Clouds. The model reproduces in detail typical galaxy spectra from the Early Data Release (EDR) of the Sloan Digital Sky Survey (SDSS). We exemplify how this type of spectral fit can constrain physical parameters such as the star formation history, metallicity and dust content of galaxies. Our model is the first to enable accurate studies of absorption-line strengths in galaxies containing stars over the full range of ages. Using the highest-quality spectra of the SDSS EDR, we show that this model can reproduce simultaneously the observed strengths of those Lick indices that do not depend strongly on element abundance ratios [abridged].
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Star Formation in Galaxies Along the Hubble Sequence

            Observations of star formation rates (SFRs) in galaxies provide vital clues to the physical nature of the Hubble sequence, and are key probes of the evolutionary properties of galaxies. The focus of this review is on the broad patterns in the star formation properties of galaxies along the Hubble sequence, and their implications for understanding galaxy evolution and the physical processes that drive the evolution. Star formation in the disks and nuclear regions of galaxies are reviewed separately, then discussed within a common interpretive framework. The diagnostic methods used to measure SFRs are also reviewed, and a self-consistent set of SFR calibrations is presented as an aid to workers in the field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Dust Content and Opacity of Actively Star-Forming Galaxies

              (Abridged) We present far-infrared (FIR) photometry at 150 micron and 205 micron of eight low-redshift starburst galaxies obtained with the ISO Photometer. Five of the eight galaxies are detected in both wavebands and these data are used, in conjunction with IRAS archival photometry, to model the dust emission at lambda>40 micron. The FIR spectral energy distributions (SEDs) are best fitted by a combination of two modified Planck functions, with T~40-55 K (warm dust) and T~20-23 K (cool dust), and with a dust emissivity index epsilon=2. The cool dust can be a major contributor to the FIR emission of starburst galaxies, representing up to 60% of the total flux. This component is heated not only by the general interstellar radiation field, but also by the starburst itself. The cool dust mass is up to ~150 times larger than the warm dust mass, bringing the gas-to-dust ratios of the starbursts in our sample close to Milky Way values, once rescaled for the appropriate metallicity. The ratio between the total dust FIR emission in the range 1-1000 micron and the IRAS FIR emission in the range 40-120 micron is ~1.75, with small variations from galaxy to galaxy. The FIR emission predicted by the dust reddening of the UV-to-nearIR stellar emission is within a factor ~2 of the observed value in individual galaxies and within 20% when averaged over a large sample. If our sample of local starbursts is representative of high-redshift (z>1), UV-bright, star-forming galaxies, these galaxies' FIR emission will be generally undetected in sub-mm surveys, unless (1) their bolometric luminosity is comparable to or larger than that of ultraluminous FIR galaxies and (2) their FIR SED contains a cool dust component.
                Bookmark

                Author and article information

                Journal
                The Astrophysical Journal
                ApJ
                American Astronomical Society
                1538-4357
                November 10 2016
                November 04 2016
                : 831
                : 2
                : 176
                Article
                10.3847/0004-637X/831/2/176
                1e53c883-7abf-400b-b38e-644f2809fff4
                © 2016

                http://iopscience.iop.org/info/page/text-and-data-mining

                http://iopscience.iop.org/page/copyright

                History

                Comments

                Comment on this article