22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Smart and flexible CNTs@MXene heterostructure-decorated cellulose films with excellent electrothermal/photothermal conversion and EMI shielding performances

      , , , , ,
      Carbon
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Electromagnetic interference shielding with 2D transition metal carbides (MXenes)

          Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti3C2Tx film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti3C2Tx films (4600 Siemens per centimeter) and multiple internal reflections from Ti3C2Tx flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT x (MXene).

              Lightweight, ultrathin, and flexible electromagnetic interference (EMI) shielding materials are needed to protect electronic circuits and portable telecommunication devices and to eliminate cross-talk between devices and device components. Here, we show that a two-dimensional (2D) transition metal carbonitride, Ti3CNT x MXene, with a moderate electrical conductivity, provides a higher shielding effectiveness compared with more conductive Ti3C2T x or metal foils of the same thickness. This exceptional shielding performance of Ti3CNT x was achieved by thermal annealing and is attributed to an anomalously high absorption of electromagnetic waves in its layered, metamaterial-like structure. These results provide guidance for designing advanced EMI shielding materials but also highlight the need for exploring fundamental mechanisms behind interaction of electromagnetic waves with 2D materials.
                Bookmark

                Author and article information

                Contributors
                Journal
                Carbon
                Carbon
                Elsevier BV
                00086223
                November 2022
                November 2022
                : 200
                : 491-499
                Article
                10.1016/j.carbon.2022.08.040
                1dd2b9d6-9714-44a1-97fd-0f5f25c94d33
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,680

                Cited by23

                Most referenced authors695