7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Thermal camouflaging metamaterials

      , , , , , , ,
      Materials Today
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references176

          • Record: found
          • Abstract: not found
          • Article: not found

          The electronic properties of graphene

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cooling, heating, generating power, and recovering waste heat with thermoelectric systems.

            Lon E Bell (2008)
            Thermoelectric materials are solid-state energy converters whose combination of thermal, electrical, and semiconducting properties allows them to be used to convert waste heat into electricity or electrical power directly into cooling and heating. These materials can be competitive with fluid-based systems, such as two-phase air-conditioning compressors or heat pumps, or used in smaller-scale applications such as in automobile seats, night-vision systems, and electrical-enclosure cooling. More widespread use of thermoelectrics requires not only improving the intrinsic energy-conversion efficiency of the materials but also implementing recent advancements in system architecture. These principles are illustrated with several proven and potential applications of thermoelectrics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent Advances in Ultrathin Two-Dimensional Nanomaterials.

              Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocatalysis, batteries, supercapacitors, solar cells, photocatalysis, and sensing platforms. Finally, the challenges and outlooks in this promising field are featured on the basis of its current development.
                Bookmark

                Author and article information

                Contributors
                Journal
                Materials Today
                Materials Today
                Elsevier BV
                13697021
                May 2021
                May 2021
                : 45
                : 120-141
                Article
                10.1016/j.mattod.2020.11.013
                1dce5a49-73a4-46a1-b18f-f589eecfa0b1
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article