59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO 4 is its relatively wide bandgap (∼2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show that annealing nanoporous bismuth vanadate electrodes at 350 °C under nitrogen flow can result in nitrogen doping and generation of oxygen vacancies. This gentle nitrogen treatment not only effectively reduces the bandgap by ∼0.2 eV but also increases the majority carrier density and mobility, enhancing electron–hole separation. The effect of nitrogen incorporation and oxygen vacancies on the electronic band structure and charge transport of bismuth vanadate are systematically elucidated by ab initio calculations. Owing to simultaneous enhancements in photon absorption and charge transport, the applied bias photon-to-current efficiency of nitrogen-treated BiVO 4 for solar water splitting exceeds 2%, a record for a single oxide photon absorber, to the best of our knowledge.

          Abstract

          Bismuth vanadate is a promising photoanode for water-splitting, although its performance is limited by its wide bandgap. Here, the authors show that a gentle nitrogen treatment can result in nitrogen doping and oxygen vacancy generation, simultaneously reducing bandgap and increasing charge transport.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials

            Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Phonons and related properties of extended systems from density-functional perturbation theory

              This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudo-potential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long wave-length vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                26 October 2015
                2015
                : 6
                : 8769
                Affiliations
                [1 ]Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, USA
                [2 ]Department of Chemistry, University of California , Davis, California 95616, USA
                [3 ]Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, USA
                Author notes
                [*]

                Present address: Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; California Institute of Technology, Pasadena, California 91125, USA.

                Article
                ncomms9769
                10.1038/ncomms9769
                4640143
                26498984
                1d319978-eb44-4d81-8c2c-aef7f1e01b1c
                Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 14 September 2015
                : 29 September 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article