0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      One-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIR

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The eventual exploitation of one-dimensional nanomaterials yet needs the development of scalable, high yield, homogeneous, and environmentally friendly methods able to meet the requirements for the fabrication of under design functional nanomaterials. In this article, we demonstrate a vacuum and plasma one-reactor approach for the synthesis of the fundamental common element in solar energy and optoelectronics, i.e. the transparent conducting electrode but in the form of nanotubes and nanotrees architectures. Although the process is generic and can be used for a variety of TCOs and wide-bandgap semiconductors, we focus herein on Indium Doped Tin Oxide (ITO) as the most extended in the previous applications. This protocol combines widely applied deposition techniques such as thermal evaporation for the formation of organic nanowires serving as 1D and 3D soft templates, deposition of polycrystalline layers by magnetron sputtering, and removal of the template by simply annealing under mild vacuum conditions. The process variables are tuned to control the stoichiometry, morphology, and alignment of the ITO nanotubes and nanotrees. Four-probe characterization reveals the improved lateral connectivity of the ITO nanotrees and applied on individual nanotubes shows resistivities as low as 3.5 +/- 0.9 x 10-4 {\Omega}.cm, a value comparable to single-crystalline counterparts. The assessment of diffuse reflectance and transmittance in the UV-VIS range confirms the viability of the supported ITO nanotubes as a random optical media working as strong scattering layers. Further ability to form ITO nanotrees opens the path for practical applications as ultra-broadband absorbers in the NIR. The demonstrated low resistivity and optical properties of these ITO nanostructures open the way for their use in LEDs, IR shield, energy harvesting, nanosensors, and photoelectrochemical applications

          Related collections

          Author and article information

          Journal
          18 May 2021
          Article
          2105.08751
          1ce7d56b-840a-4ee0-9495-8915fcb77598

          http://creativecommons.org/licenses/by-nc-sa/4.0/

          History
          Custom metadata
          21 pages, 1 schematic, 6 figures, supporting information
          physics.app-ph cond-mat.mtrl-sci

          Condensed matter,Technical & Applied physics
          Condensed matter, Technical & Applied physics

          Comments

          Comment on this article