6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review on Electrospun Poly(amino acid) Nanofibers and Their Applications of Hemostasis and Wound Healing

      , , , ,
      Biomolecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The timely and effective control and repair of wound bleeding is a key research issue all over the world. From traditional compression hemostasis to a variety of new hemostatic methods, people have a more comprehensive understanding of the hemostatic mechanism and the structure and function of different types of wound dressings. Electrospun nanofibers stand out with nano size, high specific surface area, higher porosity, and a variety of complex structures. They are high-quality materials that can effectively promote wound hemostasis and wound healing because they can imitate the structural characteristics of the skin extracellular matrix (ECM) and support cell adhesion and angiogenesis. At the same time, combined with amino acid polymers with good biocompatibility not only has high compatibility with the human body but can also be combined with a variety of drugs to further improve the effect of wound hemostatic dressing. This paper summarizes the application of different amino acid electrospun wound dressings, analyzes the characteristics of different materials in preparation and application, and looks forward to the development of directions of poly(amino acid) electrospun dressings in hemostasis.

          Related collections

          Most cited references160

          • Record: found
          • Abstract: not found
          • Article: not found

          Diabetic Foot Ulcers and Their Recurrence.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thrombosis as an intravascular effector of innate immunity.

            Thrombosis is the most frequent cause of mortality worldwide and is closely linked to haemostasis, which is the biological mechanism that stops bleeding after the injury of blood vessels. Indeed, both processes share the core pathways of blood coagulation and platelet activation. Here, we summarize recent work suggesting that thrombosis under certain circumstances has a major physiological role in immune defence, and we introduce the term immunothrombosis to describe this process. Immunothrombosis designates an innate immune response induced by the formation of thrombi inside blood vessels, in particular in microvessels. Immunothrombosis is supported by immune cells and by specific thrombosis-related molecules and generates an intravascular scaffold that facilitates the recognition, containment and destruction of pathogens, thereby protecting host integrity without inducing major collateral damage to the host. However, if uncontrolled, immunothrombosis is a major biological process fostering the pathologies associated with thrombosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of Wound Healing by Growth Factors and Cytokines

              Cutaneous wound healing is a complex process involving blood clotting, inflammation, new tissue formation, and finally tissue remodeling. It is well described at the histological level, but the genes that regulate skin repair have only partially been identified. Many experimental and clinical studies have demonstrated varied, but in most cases beneficial, effects of exogenous growth factors on the healing process. However, the roles played by endogenous growth factors have remained largely unclear. Initial approaches at addressing this question focused on the expression analysis of various growth factors, cytokines, and their receptors in different wound models, with first functional data being obtained by applying neutralizing antibodies to wounds. During the past few years, the availability of genetically modified mice has allowed elucidation of the function of various genes in the healing process, and these studies have shed light onto the role of growth factors, cytokines, and their downstream effectors in wound repair. This review summarizes the results of expression studies that have been performed in rodents, pigs, and humans to localize growth factors and their receptors in skin wounds. Most importantly, we also report on genetic studies addressing the functions of endogenous growth factors in the wound repair process.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BIOMHC
                Biomolecules
                Biomolecules
                MDPI AG
                2218-273X
                June 2022
                June 07 2022
                : 12
                : 6
                : 794
                Article
                10.3390/biom12060794
                35740919
                1ba0de08-65d9-4997-9efd-cad23f596f1b
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article