3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Distribution of histaminergic neurons and their modulatory effects on oscillatory activity in the olfactory center of the terrestrial slug Limax.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Terrestrial mollusks can form an odor aversion memory following the simultaneous presentation of a food odor and an aversive stimulus. The local field potential oscillation recorded on the surface of the procerebrum (PC; the higher olfactory center) exhibits a frequency change in response to the detection of a learned odor; such a change is thus considered to reflect the internal state of the brain during memory recall. Thus far, dopamine and serotonin have been demonstrated to change the oscillatory frequency. Other monoamines, however, have not yet been studied. In the present study, we investigated the possible involvement of histamine (HA). Immunohistochemical staining of HA and in situ hybridization against histidine decarboxylase revealed the location of the cell bodies of HAergic neurons in all ganglia of the brain. The majority of them were located at the medial aspect of the pedal ganglia, and the cerebral ganglia also contained numerous HAergic neurons in their posterior regions. The neuropil layers of the PC received HAergic innervation from the neurons in the cerebral ganglion, as well as from a few neurons located in the dorsomedial part of the cell mass layer of the PC. The HAergic fibers, however, innervated spatially limited regions of the PC, and seemed to affect a small fraction of the PC neurons. HA exerted accelerating effects on the LFP oscillation in a dose-dependent manner, and this effect was suppressed by an H2 blocker, cimetidine. Our results support the involvement of HA in the functioning of the PC.

          Related collections

          Author and article information

          Journal
          J. Comp. Neurol.
          The Journal of comparative neurology
          Wiley-Blackwell
          1096-9861
          0021-9967
          Jan 01 2016
          : 524
          : 1
          Affiliations
          [1 ] International College of Arts and Sciences, Fukuoka Women's University, Higashi-ku, Fukuoka, 813-8529, Japan.
          [2 ] Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, 769-2193, Japan.
          Article
          10.1002/cne.23829
          26105566
          1b247761-d96f-4ef3-8e13-71548f7ba879
          History

          field potential oscillation,histamine,olfactory center,procerebral lobe,procerebrum

          Comments

          Comment on this article