10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Matrine alleviates lipopolysaccharide-induced intestinal inflammation and oxidative stress via CCR7 signal

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study was to investigate the protective effects of matrine on lipopolysaccharide (LPS)-induced inflammation and oxidative stress in vivo and in vitro. The results showed that matrine improved intestinal inflammatory status and oxidative balance and enhanced chemokine receptor 7 (CCR7) expression. In LPS-challenged mice and Caco-2 cells, matrine alleviated LPS-induced inflammation and oxidative stress via downregulating pro-inflammatory cytokines (IL-1β and IL-17) and malondialdehyde (MDA) production. CCR7-siRNA transfection blocked the protective effects of matrine on LPS-induced inflammation and oxidative stress and exacerbated LPS caused injury. In conclusion, matrine alleviates LPS-induced intestinal inflammation and oxidative stress in mice and Caco-2 cells, which may be associated with CCR7 signal.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          NF-kappaB in inflammatory bowel disease.

          Apart from genetic and environmental factors, the mucosal immune system of the gut plays a central role in the pathogenesis of inflammatory bowel disease (IBD). In the healthy gut, the mucosal immune system ensures the balance between pro- and anti-inflammatory mediators and thereby allows an effective defence against luminal pathogens but at the same time prevents an overwhelming immune reaction directed against the huge amount of harmless luminal antigens (for example, components of food or nonpathological bacteria). In both entities of IBD (Crohn's disease and ulcerative colitis) this immunological balance is severely impaired and shifted towards the pro-inflammatory side. The chronic mucosal inflammation in IBD is caused by hyperactivation of effector immune cells, which produce high levels of pro-inflammatory cytokines like tumour necrosis factor-alpha, interleukin-6 and interferon-gamma, resulting in colonic tissue damage. The nuclear transcription factor kappaB (NF-kappaB) was identified as one of the key regulators in this immunological setting. Its activation is markedly induced in IBD patients and through its ability to promote the expression of various pro-inflammatory genes, NF-kappaB strongly influences the course of mucosal inflammation. Considering the different cell-type specific effects which are mediated by NF-kappaB, this review aims at describing the complex role of NF-kappaB in IBD and discusses existing pharmacological attempts to block the activation of NF-kappaB to develop new therapeutic strategies in IBD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antiinflammatory effects of matrine in LPS-induced acute lung injury in mice.

            Matrine is one of the main active components of Chinese herb Sophora flavescens Ait (Kushen), which has been demonstrated to be effective in suppressing inflammation. The aim of the present study is to investigate the effect of matrine on LPS-induced lung injury. Lung injury was assessed by histological study and wet to dry weight ratios, as well as cell count and protein content in bronchoalveolar lavage fluid. We also detected MPO activity reflecting neutrophil infiltration and MDA activity examining oxidative stress in lung tissues. Cytokines and ROS production in cells were monitored by ELISA and flow cytometry, respectively. The results showed that high dose of matrine significantly reduced the mortality rate of mice with LPS administration. Treatment with matrine improved LPS-induced lung histopathologic changes, alleviated pulmonary edema and lung vascular leak, inhibited MPO and MDA activity,and reduced the production of inflammatory mediators including TNF-α, IL-6 and HMGB1. In vitro, matrine administration reduced the production of ROS and inflammatory factors, which was possibly associated with inhibition of NF-κB. In conclusion, the current study demonstrated that matrine exhibited a protective effect on LPS-induced acute lung injury by inhibiting of the inflammatory response, which may involve the suppression of ROS and tissue oxidative stress. Copyright © 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Matrine pretreatment improves cardiac function in rats with diabetic cardiomyopathy via suppressing ROS/TLR-4 signaling pathway

              Aim: Matrine is an alkaloid from Sophora alopecuroides L, which has shown a variety of pharmacological activities and potential therapeutic value in cardiovascular diseases. In this study we examined the protective effects of matrine against diabetic cardiomyopathy (DCM) in rats. Methods: Male SD rats were injected with streptozotocin (STZ) to induce DCM. One group of DCM rats was pretreated with matrine (200 mg·kg−1·d−1, po) for 10 consecutive days before STZ injection. Left ventricular function was evaluated using invasive hemodynamic examination, and myocardiac apoptosis was assessed. Primary rat myocytes were used for in vitro experiments. Intracellular ROS generation, MDA content and GPx activity were determined. Real-time PCR and Western blotting were performed to detect the expression of relevant mRNAs and proteins. Results: DCM rats exhibited abnormally elevated non-fasting blood glucose levels at 4 weeks after STZ injection, and LV function impairment at 16 weeks. The cardiac tissues of DCM rats showed markedly increased apoptosis, excessive ROS production, and activation of TLR-4/MyD-88/caspase-8/caspase-3 signaling. Pretreatment with matrine significantly decreased non-fasting blood glucose levels and improved LV function in DCM rats, which were associated with reducing apoptosis and ROS production, and suppressing TLR-4/MyD-88/caspase-8/caspase-3 signaling in cardiac tissues. Incubation in a high-glucose medium induced oxidative stress and activation of TLR-4/MyD-88 signaling in cultured myocytes in vitro, which were significantly attenuated by pretreatment with N-acetylcysteine. Conclusion: Excessive ROS production in DCM activates the TLR-4/MyD-88 signaling, resulting in cardiomyocyte apoptosis, whereas pretreatment with matrine improves cardiac function via suppressing ROS/TLR-4 signaling pathway.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                14 February 2017
                11 January 2017
                : 8
                : 7
                : 11621-11628
                Affiliations
                1 Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, P. R. China
                2 Department of Nursing, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, P. R. China
                3 Traffic Police Department, Jinan Public Security Bureau, Jinan 250021, Shandong, P. R. China
                4 Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, P. R. China
                Author notes
                Correspondence to: Ling Gao, gaoling8822@ 123456sina.com
                Article
                14598
                10.18632/oncotarget.14598
                5355291
                28086227
                199bf8ee-360f-46f4-9bf4-eaade3693a71
                Copyright: © 2017 Wu et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 December 2016
                : 27 December 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                matrine,inflammation,oxidative stress,ccr7,lps
                Oncology & Radiotherapy
                matrine, inflammation, oxidative stress, ccr7, lps

                Comments

                Comment on this article