6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coinfection of Porcine Circovirus 2 and Pseudorabies Virus Enhances Immunosuppression and Inflammation through NF-κB, JAK/STAT, MAPK, and NLRP3 Pathways

      , , , , , , ,
      International Journal of Molecular Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Porcine circovirus 2 (PCV2) and pseudorabies virus (PRV) are economically important pathogens in swine. PCV2 and PRV coinfection can cause more severe neurological and respiratory symptoms and higher mortality of piglets. However, the exact mechanism involved in the coinfection of PRV and PCV2 and its pathogenesis remain unknown. Here, porcine kidney cells (PK-15) were infected with PCV2 and/or PRV, and then the activation of immune and inflammatory pathways was evaluated to clarify the influence of the coinfection on immune and inflammatory responses. We found that the coinfection of PCV2 and PRV can promote the activation of nuclear factor-κB (NF-κB), c-Jun N-terminal protein kinases (JNK), p38, and nod-like receptor protein 3 (NLRP3) pathways, thus enhancing the expression of interferon-γ (IFN-γ), interferon-λ1 (IFN-λ1), interferon-stimulated gene (ISG15), interleukin 6 (IL6), and interleukin 1β (IL1β). Meanwhile, PCV2 and PRV also inhibit the expression and signal transduction of IFN-β, tumor necrosis factor α (TNFα), and the Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway. In addition, PCV2 and PRV infection can also weaken extracellular-signal-regulated kinase (ERK) activity. These results indicate that the regulations of cellular antiviral immune responses and inflammatory responses mediated by NF-κB, JAK/STAT, mitogen-activated protein kinase (MAPK), and NLRP3 pathways, contribute to immune escape of PCV2 and PRV and host antiviral responses.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Signalling pathways of the TNF superfamily: a double-edged sword.

          Two different tumour-necrosis factors (TNFs), first isolated in 1984, were found to be cytotoxic to tumour cells and to induce tumour regression in mice. Research during the past two decades has shown the existence of a superfamily of TNF proteins consisting of 19 members that signal through 29 receptors. These ligands, while regulating normal functions such as immune responses, haematopoiesis and morphogenesis, have also been implicated in tumorigenesis, transplant rejection, septic shock, viral replication, bone resorption, rheumatoid arthritis and diabetes; so indicating their role as 'double-edged swords'. These cytokines either induce cellular proliferation, survival, differentiation or apoptosis. Blockers of TNF have been approved for human use in treating TNF-linked autoimmune diseases in the United States and other countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors.

            Induction of type I interferons (IFNs) by viruses and other pathogens is crucial for innate immunity, and it is mediated by the activation of pattern-recognition receptors, such as Toll-like receptors and cytosolic receptors such as RIG-I and MDA5. The type I IFN induction is primarily controlled at the gene transcriptional level, wherein a family of transcription factors, interferon regulatory factors (IRFs), plays central roles. Here, we summarize the recent studies on IRFs, providing a paradigm of how genes are ingeniously regulated during immune responses. We also consider some evolutional aspects on the IFN-IRF system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics

              Tumor necrosis factor alpha (TNF-α) was initially recognized as a factor that causes the necrosis of tumors, but it has been recently identified to have additional important functions as a pathological component of autoimmune diseases. TNF-α binds to two different receptors, which initiate signal transduction pathways. These pathways lead to various cellular responses, including cell survival, differentiation, and proliferation. However, the inappropriate or excessive activation of TNF-α signaling is associated with chronic inflammation and can eventually lead to the development of pathological complications such as autoimmune diseases. Understanding of the TNF-α signaling mechanism has been expanded and applied for the treatment of immune diseases, which has resulted in the development of effective therapeutic tools, including TNF-α inhibitors. Currently, clinically approved TNF-α inhibitors have shown noticeable potency in a variety of autoimmune diseases, and novel TNF-α signaling inhibitors are being clinically evaluated. In this review, we briefly introduce the impact of TNF-α signaling on autoimmune diseases and its inhibitors, which are used as therapeutic agents against autoimmune diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                April 2022
                April 18 2022
                : 23
                : 8
                : 4469
                Article
                10.3390/ijms23084469
                35457287
                19593402-565e-4ec5-8c60-a24fcd14b2a9
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article