57
views
0
recommends
+1 Recommend
1 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insights into nervous system repair from the fruit fly

      review-article
      ,
      Neuronal Signaling
      Portland Press Ltd.
      axon regrowth, axonal injury, cell proliferation, CNS damaga, glial injury

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Millions of people experience injury to the central nervous system (CNS) each year, many of whom are left permanently disabled, providing a challenging hurdle for the field of regenerative medicine. Repair of damage in the CNS occurs through a concerted effort of phagocytosis of debris, cell proliferation and differentiation to produce new neurons and glia, distal axon/dendrite degeneration, proximal axon/dendrite regeneration and axon re-enwrapment. In humans, regeneration is observed within the peripheral nervous system, while in the CNS injured axons exhibit limited ability to regenerate. This has also been described for the fruit fly Drosophila. Powerful genetic tools available in Drosophila have allowed the response to CNS insults to be probed and novel regulators with mammalian orthologs identified. The conservation of many regenerative pathways, despite considerable evolutionary separation, stresses that these signals are principal regulators and may serve as potential therapeutic targets. Here, we highlight the role of Drosophila CNS injury models in providing key insight into regenerative processes by exploring the underlying pathways that control glial and neuronal activation in response to insult, and their contribution to damage repair in the CNS.

          Related collections

          Most cited references151

          • Record: found
          • Abstract: found
          • Article: not found

          Estimating the global incidence of traumatic brain injury

          Traumatic brain injury (TBI)—the “silent epidemic”—contributes to worldwide death and disability more than any other traumatic insult. Yet, TBI incidence and distribution across regions and socioeconomic divides remain unknown. In an effort to promote advocacy, understanding, and targeted intervention, the authors sought to quantify the case burden of TBI across World Health Organization (WHO) regions and World Bank (WB) income groups. Open-source epidemiological data on road traffic injuries (RTIs) were used to model the incidence of TBI using literature-derived ratios. First, a systematic review on the proportion of RTIs resulting in TBI was conducted, and a meta-analysis of study-derived proportions was performed. Next, a separate systematic review identified primary source studies describing mechanisms of injury contributing to TBI, and an additional meta-analysis yielded a proportion of TBI that is secondary to the mechanism of RTI. Then, the incidence of RTI as published by the Global Burden of Disease Study 2015 was applied to these two ratios to generate the incidence and estimated case volume of TBI for each WHO region and WB income group. Relevant articles and registries were identified via systematic review; study quality was higher in the high-income countries (HICs) than in the low- and middle-income countries (LMICs). Sixty-nine million (95% CI 64–74 million) individuals worldwide are estimated to sustain a TBI each year. The proportion of TBIs resulting from road traffic collisions was greatest in Africa and Southeast Asia (both 56%) and lowest in North America (25%). The incidence of RTI was similar in Southeast Asia (1.5% of the population per year) and Europe (1.2%). The overall incidence of TBI per 100,000 people was greatest in North America (1299 cases, 95% CI 650–1947) and Europe (1012 cases, 95% CI 911–1113) and least in Africa (801 cases, 95% CI 732–871) and the Eastern Mediterranean (897 cases, 95% CI 771–1023). The LMICs experience nearly 3 times more cases of TBI proportionally than HICs. Sixty-nine million (95% CI 64–74 million) individuals are estimated to suffer TBI from all causes each year, with the Southeast Asian and Western Pacific regions experiencing the greatest overall burden of disease. Head injury following road traffic collision is more common in LMICs, and the proportion of TBIs secondary to road traffic collision is likewise greatest in these countries. Meanwhile, the estimated incidence of TBI is highest in regions with higher-quality data, specifically in North America and Europe.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            dSarm/Sarm1 is required for activation of an injury-induced axon death pathway.

            Axonal and synaptic degeneration is a hallmark of peripheral neuropathy, brain injury, and neurodegenerative disease. Axonal degeneration has been proposed to be mediated by an active autodestruction program, akin to apoptotic cell death; however, loss-of-function mutations capable of potently blocking axon self-destruction have not been described. Here, we show that loss of the Drosophila Toll receptor adaptor dSarm (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously suppresses Wallerian degeneration for weeks after axotomy. Severed mouse Sarm1 null axons exhibit remarkable long-term survival both in vivo and in vitro, indicating that Sarm1 prodegenerative signaling is conserved in mammals. Our results provide direct evidence that axons actively promote their own destruction after injury and identify dSarm/Sarm1 as a member of an ancient axon death signaling pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SARM1 activation triggers axon degeneration locally via NAD⁺ destruction.

              Axon degeneration is an intrinsic self-destruction program that underlies axon loss during injury and disease. Sterile alpha and TIR motif-containing 1 (SARM1) protein is an essential mediator of axon degeneration. We report that SARM1 initiates a local destruction program involving rapid breakdown of nicotinamide adenine dinucleotide (NAD(+)) after injury. We used an engineered protease-sensitized SARM1 to demonstrate that SARM1 activity is required after axon injury to induce axon degeneration. Dimerization of the Toll-interleukin receptor (TIR) domain of SARM1 alone was sufficient to induce locally mediated axon degeneration. Formation of the SARM1 TIR dimer triggered rapid breakdown of NAD(+), whereas SARM1-induced axon destruction could be counteracted by increased NAD(+) synthesis. SARM1-induced depletion of NAD(+) may explain the potent axon protection in Wallerian degeneration slow (Wld(s)) mutant mice.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neuronal Signal
                Neuronal Signal
                ns
                Neuronal Signaling
                Portland Press Ltd.
                2059-6553
                April 2022
                13 April 2022
                : 6
                : 1
                : NS20210051
                Affiliations
                Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K.
                Author notes
                Correspondence: Torsten Bossing ( torsten.bossing@ 123456plymouth.ac.uk )
                [*]

                Present Address: Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, U.K.

                Author information
                https://orcid.org/0000-0002-3277-9130
                Article
                NS20210051
                10.1042/NS20210051
                9008705
                181136e2-5a26-44e2-b980-b0b035515654
                © 2022 The Author(s).

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

                History
                : 19 November 2021
                : 25 March 2022
                : 29 March 2022
                : 30 March 2022
                Page count
                Pages: 17
                Categories
                Neuroscience
                Molecular Interactions
                Cell Death & Injury
                Review Articles

                axon regrowth,axonal injury,cell proliferation,cns damaga,glial injury

                Comments

                Comment on this article