124
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      New England Journal of Medicine
      Massachusetts Medical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case-control analysis to identify antibody and cellular immune correlates of infection risk. In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up. Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P=0.02; q=0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P=0.03; q=0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies. This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Vaccines: correlates of vaccine-induced immunity.

          The immune system is redundant, and B and T cells collaborate. However, almost all current vaccines work through induction of antibodies in serum or on mucosa that block infection or interfere with microbial invasion of the bloodstream. To protect, antibodies must be functional in the sense of neutralization or opsonophagocytosis. Correlates of protection after vaccination are sometimes absolute quantities but often are relative, such that most infections are prevented at a particular level of response but some will occur above that level because of a large challenge dose or deficient host factors. There may be >1 correlate of protection for a disease, which we term "cocorrelates." Either effector or central memory may correlate with protection. Cell-mediated immunity also may operate as a correlate or cocorrelate of protection against disease, rather than against infection. In situations where the true correlate of protection is unknown or difficult to measure, surrogate tests (usually antibody measurements) must suffice as predictors of protection by vaccines. Examples of each circumstance are given.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An HIV-1 gp120 envelope human monoclonal antibody that recognizes a C1 conformational epitope mediates potent antibody-dependent cellular cytotoxicity (ADCC) activity and defines a common ADCC epitope in human HIV-1 serum.

            Among nonneutralizing HIV-1 envelope antibodies (Abs), those capable of mediating antibody-dependent cellular cytotoxicity (ADCC) activity have been postulated to be important for control of HIV-1 infection. ADCC-mediating Ab must recognize HIV-1 antigens expressed on the membrane of infected cells and bind the Fcγ receptor (FcR) of the effector cell population. However, the precise targets of serum ADCC antibody are poorly characterized. The human monoclonal antibody (MAb) A32 is a nonneutralizing antibody isolated from an HIV-1 chronically infected person. We investigated the ability of MAb A32 to recognize HIV-1 envelope expressed on the surface of CD4(+) T cells infected with primary and laboratory-adapted strains of HIV-1, as well as its ability to mediate ADCC activity. The MAb A32 epitope was expressed on the surface of HIV-1-infected CD4(+) T cells earlier than the CD4-inducible (CD4i) epitope bound by MAb 17b and the gp120 carbohydrate epitope bound by MAb 2G12. Importantly, MAb A32 was a potent mediator of ADCC activity. Finally, an A32 Fab fragment blocked the majority of ADCC-mediating Ab activity in plasma of subjects chronically infected with HIV-1. These data demonstrate that the epitope defined by MAb A32 is a major target on gp120 for plasma ADCC activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Correlation between immunologic responses to a recombinant glycoprotein 120 vaccine and incidence of HIV-1 infection in a phase 3 HIV-1 preventive vaccine trial.

              An objective of the first efficacy trial of a candidate vaccine containing recombinant human immunodeficiency virus (HIV) type 1 envelope glycoprotein 120 (rgp120) antigens was to assess correlations between antibody responses to rgp120 and the incidence of HIV-1 infection. Within the randomized trial (for vaccinees, n=3598; for placebo recipients, n=1805), binding and neutralizing antibody responses to rgp120 were quantitated. A case-cohort design was used to study correlations between antibody levels and HIV-1 incidence. Peak antibody levels were significantly inversely correlated with HIV-1 incidence. The relative risk (RR) of infection was 0.63 (95% confidence interval, 0.45-0.89) per log(10) higher neutralization titer against HIV-1(MN), and the RRs of infection for second-, third-, and fourth-quartile responses of antibody blocking of gp120 binding to soluble CD4 versus first-quartile responses (the lowest responses) were 0.35, 0.28, and 0.22, respectively. Despite inducing a complex, robust immune response, the vaccine was unable to reduce the incidence of HIV-1. Two interpretations of the correlative results are that the levels of antibodies (i) caused both an increased (low responders) and decreased (high responders) risk of HIV-1 acquisition or (ii) represented a correlate of susceptibility to HIV-1 but had no causal effect on susceptibility. Although the data cannot definitively discriminate between these 2 explanations, (ii) appears to be more likely.
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                April 05 2012
                April 05 2012
                : 366
                : 14
                : 1275-1286
                Article
                10.1056/NEJMoa1113425
                3371689
                22475592
                17614677-e664-4e65-a184-6acf86caabfa
                © 2012
                History

                Comments

                Comment on this article