43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA virus infections are detected by the RIG-I family of receptors, which induce type-I interferons through the mitochondrial protein MAVS. MAVS forms large prion-like polymers that activate the cytosolic kinases IKK and TBK1, which in turn activate NF-κB and IRF3, respectively, to induce interferons. Here we show that MAVS polymers recruit several TRAF proteins, including TRAF2, TRAF5, and TRAF6, through distinct TRAF-binding motifs. Mutations of these motifs that disrupted MAVS binding to TRAFs abrogated its ability to activate IRF3. IRF3 activation was also abolished in cells lacking TRAF2, 5, and 6. These TRAF proteins promoted ubiquitination reactions that recruited NEMO to the MAVS signaling complex, leading to the activation of IKK and TBK1. These results delineate the mechanism of MAVS signaling and reveal that TRAF2, 5, and 6, which are normally associated with NF-κB activation, also play a crucial role in IRF3 activation in antiviral immune responses.

          DOI: http://dx.doi.org/10.7554/eLife.00785.001

          eLife digest

          The innate immune system can detect and destroy viruses, bacteria and other pathogens that enter the human body. In particular, inside cells, viral RNA can bind to and activate a protein called RIG-I. This protein switches on another protein, called MAVS, which can activate other copies of itself. These MAVS molecules then aggregate together on the membrane of mitochondria and send a signal that leads to the production of small proteins, called cytokines, which stimulate an inflammatory response and ultimately neutralize the virus.

          Although many of the proteins that are activated by MAVS in the innate immunity signaling pathway have been identified, precisely how MAVS transmits this signal is unknown. Now, Liu et al. explore how this protein can propagate signals in the innate immune response by monitoring activation of the transcription factors IRF3 and NF-κB, which transcribe cytokine genes.

          Previous studies have suggested that a protein known as ubiquitin is needed to activate RIG-I, and that this protein collaborates with MAVS to signal through the innate immunity pathway. Liu et al. found that a group of proteins including TRAF2, TRAF5, TRAF6 and LUBAC relay the antiviral signal by binding to MAVS. These so-called ‘E3 ligases’ string ubiquitin together in chains called polyubiquitin, which is essential for activating signaling after, or downstream of, MAVS; however, the association of these E3 ligases with MAVS also requires that multiple copies of MAVS cluster together.

          MAVS, the TRAF proteins and LUBAC collectively recruit other innate immunity pathway proteins to activate IRF3 and NF-κB, and thus transcription of the genes that control the innate immunity response. Together, these results show the intricate interplay of proteins needed to eliminate viruses from the body.

          DOI: http://dx.doi.org/10.7554/eLife.00785.002

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates.

          Double-stranded RNA (dsRNA) produced during viral replication is believed to be the critical trigger for activation of antiviral immunity mediated by the RNA helicase enzymes retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). We showed that influenza A virus infection does not generate dsRNA and that RIG-I is activated by viral genomic single-stranded RNA (ssRNA) bearing 5'-phosphates. This is blocked by the influenza protein nonstructured protein 1 (NS1), which is found in a complex with RIG-I in infected cells. These results identify RIG-I as a ssRNA sensor and potential target of viral immune evasion and suggest that its ability to sense 5'-phosphorylated RNA evolved in the innate immune system as a means of discriminating between self and nonself.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain.

            TRAF6 is a signal transducer in the NF-kappaB pathway that activates IkappaB kinase (IKK) in response to proinflammatory cytokines. We have purified a heterodimeric protein complex that links TRAF6 to IKK activation. Peptide mass fingerprinting analysis reveals that this complex is composed of the ubiquitin conjugating enzyme Ubc13 and the Ubc-like protein Uev1A. We find that TRAF6, a RING domain protein, functions together with Ubc13/Uev1A to catalyze the synthesis of unique polyubiquitin chains linked through lysine-63 (K63) of ubiquitin. Blockade of this polyubiquitin chain synthesis, but not inhibition of the proteasome, prevents the activation of IKK by TRAF6. These results unveil a new regulatory function for ubiquitin, in which IKK is activated through the assembly of K63-linked polyubiquitin chains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization.

              We report here the identification and characterization of a protein, ERIS, an endoplasmic reticulum (ER) IFN stimulator, which is a strong type I IFN stimulator and plays a pivotal role in response to both non-self-cytosolic RNA and dsDNA. ERIS (also known as STING or MITA) resided exclusively on ER membrane. The ER retention/retrieval sequence RIR was found to be critical to retain the protein on ER membrane and to maintain its integrity. ERIS was dimerized on innate immune challenges. Coumermycin-induced ERIS dimerization led to strong and fast IFN induction, suggesting that dimerization of ERIS was critical for self-activation and subsequent downstream signaling.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                14 August 2013
                2013
                : 2
                : e00785
                Affiliations
                [1 ]Department of Molecular Biology, University of Texas Southwestern Medical Center , Dallas, United States
                [2 ]Howard Hughes Medical Institute, University of Texas Southwestern Medical Center , Dallas, United States
                National Institute of Biological Sciences , China
                National Institute of Biological Sciences , China
                Author notes
                [†]

                These authors contributed equally to this work.

                Article
                00785
                10.7554/eLife.00785
                3743401
                23951545
                148d2f09-ed46-45b6-b7ac-58d0822da2a9
                Copyright © 2013, Liu et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 28 March 2013
                : 01 July 2013
                Funding
                Funded by: National Institutes of Health
                Award ID: GM63692
                Award Recipient :
                Funded by: Cancer Prevention and Research Institute of Texas
                Award ID: RP101496
                Award Recipient :
                Funded by: Welch Foundation
                Award ID: I-1389
                Award Recipient :
                Funded by: Howard Hughes Medical Institute
                Award Recipient :
                Funded by: Cancer Prevention and Research Institute of Texas
                Award ID: RP110430
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Cell Biology
                Immunology
                Custom metadata
                1.0
                A cell-free system combined with cell-based assays elucidate the biochemical mechanism of signal transduction mediated by the mitochondrial protein MAVS and delineates the role of ubiquitin E3 ligases in antiviral innate immune responses.

                Life sciences
                mavs,innate immunity,virus,ubiquitin,signaling,mitochondria,human,mouse,viruses
                Life sciences
                mavs, innate immunity, virus, ubiquitin, signaling, mitochondria, human, mouse, viruses

                Comments

                Comment on this article