1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Skeletons of the Ancient Dolphin Xenorophus sloanii and Xenorophus simplicidens sp. nov. (Mammalia, Cetacea) from the Oligocene of South Carolina and the Ontogeny, Functional Anatomy, Asymmetry, Pathology, and Evolution of the Earliest Odontoceti

      ,
      Diversity
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The early diverging, dolphin-sized, cetacean clade Xenorophidae are a short-lived radiation of toothed whales (Odontoceti) that independently evolved two features long thought to be odontocete synapomorphies: the craniofacial and cochlear morphology underlying echolocation and retrograde cranial telescoping (i.e., posterior migration of the viscerocranium). This family was based on Xenorophus sloanii, which, for the past century, has been known only by a partial skull lacking a braincase and tympanoperiotics, collected around 1900 from the Ashley Formation (28–29 Ma, Rupelian) near Ladson, South Carolina. A large collection of new skulls and skeletons (ChM PV 5022, 7677; CCNHM 104, 168, 1077, 5995) from the Ashley Formation considerably expands the hypodigm for this species, now the best known of any stem odontocete and permitting evaluation of intraspecific variation and ontogenetic changes. This collection reveals that the holotype (USNM 11049) is a juvenile. Xenorophus sloanii is a relatively large odontocete (70–74 cm CBL; BZW = 29–31 cm; estimated body length 2.6–3 m) with a moderately long rostrum (RPI = 2.5), marked heterodonty, limited polydonty (13–14 teeth), prominent sagittal crest and intertemporal constriction, and drastically larger brain size than basilosaurid archaeocetes (EQ = 2.9). Dental morphology, thickened cementum, a dorsoventrally robust rostrum, and thick rugose enamel suggest raptorial feeding; oral pathology indicates traumatic tooth loss associated with mechanically risky predation attempts. Ontogenetic changes include increased palatal vomer exposure; fusion of the nasofrontal, occipito-parietal, and median frontal sutures; anterior lengthening of the nasals; elaboration of the nuchal crests; and blunting and thickening of the antorbital process. The consistent deviation of the rostrum 2–5° to the left and asymmetry of the palate, dentition, neurocranium, mandibles, and vertebrae in multiple specimens of Xenorophus sloanii suggest novel adaptations for directional hearing driven by the asymmetrically oriented pan bones of the mandibles. A second collection consisting of a skeleton and several skulls from the overlying Chandler Bridge Formation (24–23 Ma, Chattian) represents a new species, Xenorophus simplicidens n. sp., differing from Xenorophus sloanii in possessing shorter nasals, anteroposteriorly shorter supraorbital processes of the frontal, and teeth with fewer accessory cusps and less rugose enamel. Phylogenetic analysis supports monophyly of Xenorophus, with specimens of Xenorophus simplicidens nested within paraphyletic X. sloanii; in concert with stratigraphic data, these results support the interpretation of these species as part of an anagenetic lineage. New clade names are provided for the sister taxon to Xenorophidae (Ambyloccipita), and the odontocete clade excluding Xenorophidae, Ashleycetus, Mirocetus, and Simocetidae (Stegoceti). Analyses of tooth size, body size, temporal fossa length, orbit morphology, and the rostral proportion index, prompted by well-preserved remains of Xenorophus, provide insight into the early evolution of Odontoceti.

          Related collections

          Most cited references220

          • Record: found
          • Abstract: found
          • Article: not found

          TNT version 1.5, including a full implementation of phylogenetic morphometrics

          Version 1.5 of the computer program TNT completely integrates landmark data into phylogenetic analysis. Landmark data consist of coordinates (in two or three dimensions) for the terminal taxa; TNT reconstructs shapes for the internal nodes such that the difference between ancestor and descendant shapes for all tree branches sums up to a minimum; this sum is used as tree score. Landmark data can be analysed alone or in combination with standard characters; all the applicable commands and options in TNT can be used transparently after reading a landmark data set. The program continues implementing all the types of analyses in former versions, including discrete and continuous characters (which can now be read at any scale, and automatically rescaled by TNT). Using algorithms described in this paper, searches for landmark data can be made tens to hundreds of times faster than it was possible before (from T to 3T times faster, where T is the number of taxa), thus making phylogenetic analysis of landmarks feasible even on standard personal computers.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            TNT, a free program for phylogenetic analysis

              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Caroli Linnaei...Systema naturae per regna tria naturae :secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis.

                Bookmark

                Author and article information

                Journal
                DIVEC6
                Diversity
                Diversity
                MDPI AG
                1424-2818
                November 2023
                November 20 2023
                : 15
                : 11
                : 1154
                Article
                10.3390/d15111154
                1318ea72-32ff-4b4b-a6e9-09f2df179c41
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article