14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multiplex assays for the identification of serological signatures of SARS-CoV-2 infection: an antibody-based diagnostic and machine learning study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces an antibody response targeting multiple antigens that changes over time. This study aims to take advantage of this complexity to develop more accurate serological diagnostics.

          Methods

          A multiplex serological assay was developed to measure IgG and IgM antibody responses to seven SARS-CoV-2 spike or nucleoprotein antigens, two antigens for the nucleoproteins of the 229E and NL63 seasonal coronaviruses, and three non-coronavirus antigens. Antibodies were measured in serum samples collected up to 39 days after symptom onset from 215 adults in four French hospitals (53 patients and 162 health-care workers) with quantitative RT-PCR-confirmed SARS-CoV-2 infection, and negative control serum samples collected from healthy adult blood donors before the start of the SARS-CoV-2 epidemic (335 samples from France, Thailand, and Peru). Machine learning classifiers were trained with the multiplex data to classify individuals with previous SARS-CoV-2 infection, with the best classification performance displayed by a random forests algorithm. A Bayesian mathematical model of antibody kinetics informed by prior information from other coronaviruses was used to estimate time-varying antibody responses and assess the sensitivity and classification performance of serological diagnostics during the first year following symptom onset. A statistical estimator is presented that can provide estimates of seroprevalence in very low-transmission settings.

          Findings

          IgG antibody responses to trimeric spike protein (S tri) identified individuals with previous SARS-CoV-2 infection with 91·6% (95% CI 87·5–94·5) sensitivity and 99·1% (97·4–99·7) specificity. Using a serological signature of IgG and IgM to multiple antigens, it was possible to identify infected individuals with 98·8% (96·5–99·6) sensitivity and 99·3% (97·6–99·8) specificity. Informed by existing data from other coronaviruses, we estimate that 1 year after infection, a monoplex assay with optimal anti-S tri IgG cutoff has 88·7% (95% credible interval 63·4–97·4) sensitivity and that a four-antigen multiplex assay can increase sensitivity to 96·4% (80·9–100·0). When applied to population-level serological surveys, statistical analysis of multiplex data allows estimation of seroprevalence levels less than 2%, below the false-positivity rate of many other assays.

          Interpretation

          Serological signatures based on antibody responses to multiple antigens can provide accurate and robust serological classification of individuals with previous SARS-CoV-2 infection. This provides potential solutions to two pressing challenges for SARS-CoV-2 serological surveillance: classifying individuals who were infected more than 6 months ago and measuring seroprevalence in serological surveys in very low-transmission settings.

          Funding

          European Research Council. Fondation pour la Recherche Médicale. Institut Pasteur Task Force COVID-19.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study

          Summary Background Coronavirus disease 2019 (COVID-19) causes severe community and nosocomial outbreaks. Comprehensive data for serial respiratory viral load and serum antibody responses from patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not yet available. Nasopharyngeal and throat swabs are usually obtained for serial viral load monitoring of respiratory infections but gathering these specimens can cause discomfort for patients and put health-care workers at risk. We aimed to ascertain the serial respiratory viral load of SARS-CoV-2 in posterior oropharyngeal (deep throat) saliva samples from patients with COVID-19, and serum antibody responses. Methods We did a cohort study at two hospitals in Hong Kong. We included patients with laboratory-confirmed COVID-19. We obtained samples of blood, urine, posterior oropharyngeal saliva, and rectal swabs. Serial viral load was ascertained by reverse transcriptase quantitative PCR (RT-qPCR). Antibody levels against the SARS-CoV-2 internal nucleoprotein (NP) and surface spike protein receptor binding domain (RBD) were measured using EIA. Whole-genome sequencing was done to identify possible mutations arising during infection. Findings Between Jan 22, 2020, and Feb 12, 2020, 30 patients were screened for inclusion, of whom 23 were included (median age 62 years [range 37–75]). The median viral load in posterior oropharyngeal saliva or other respiratory specimens at presentation was 5·2 log10 copies per mL (IQR 4·1–7·0). Salivary viral load was highest during the first week after symptom onset and subsequently declined with time (slope −0·15, 95% CI −0·19 to −0·11; R 2=0·71). In one patient, viral RNA was detected 25 days after symptom onset. Older age was correlated with higher viral load (Spearman's ρ=0·48, 95% CI 0·074–0·75; p=0·020). For 16 patients with serum samples available 14 days or longer after symptom onset, rates of seropositivity were 94% for anti-NP IgG (n=15), 88% for anti-NP IgM (n=14), 100% for anti-RBD IgG (n=16), and 94% for anti-RBD IgM (n=15). Anti-SARS-CoV-2-NP or anti-SARS-CoV-2-RBD IgG levels correlated with virus neutralisation titre (R 2>0·9). No genome mutations were detected on serial samples. Interpretation Posterior oropharyngeal saliva samples are a non-invasive specimen more acceptable to patients and health-care workers. Unlike severe acute respiratory syndrome, patients with COVID-19 had the highest viral load near presentation, which could account for the fast-spreading nature of this epidemic. This finding emphasises the importance of stringent infection control and early use of potent antiviral agents, alone or in combination, for high-risk individuals. Serological assay can complement RT-qPCR for diagnosis. Funding Richard and Carol Yu, May Tam Mak Mei Yin, The Shaw Foundation Hong Kong, Michael Tong, Marina Lee, Government Consultancy Service, and Sanming Project of Medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients

            Coronavirus disease 2019 (COVID-19) is characterized by distinct patterns of disease progression suggesting diverse host immune responses. We performed an integrated immune analysis on a cohort of 50 COVID-19 patients with various disease severity. A unique phenotype was observed in severe and critical patients, consisting of a highly impaired interferon (IFN) type I response (characterized by no IFN-β and low IFN-α production and activity), associated with a persistent blood viral load and an exacerbated inflammatory response. Inflammation was partially driven by the transcriptional factor NF-κB and characterized by increased tumor necrosis factor (TNF)-α and interleukin (IL)-6 production and signaling. These data suggest that type-I IFN deficiency in the blood could be a hallmark of severe COVID-19 and provide a rationale for combined therapeutic approaches.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical and virological data of the first cases of COVID-19 in Europe: a case series

              Summary Background On Dec 31, 2019, China reported a cluster of cases of pneumonia in people at Wuhan, Hubei Province. The responsible pathogen is a novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report the relevant features of the first cases in Europe of confirmed infection, named coronavirus disease 2019 (COVID-19), with the first patient diagnosed with the disease on Jan 24, 2020. Methods In this case series, we followed five patients admitted to Bichat-Claude Bernard University Hospital (Paris, France) and Pellegrin University Hospital (Bordeaux, France) and diagnosed with COVID-19 by semi-quantitative RT-PCR on nasopharyngeal swabs. We assessed patterns of clinical disease and viral load from different samples (nasopharyngeal and blood, urine, and stool samples), which were obtained once daily for 3 days from hospital admission, and once every 2 or 3 days until patient discharge. All samples were refrigerated and shipped to laboratories in the National Reference Center for Respiratory Viruses (The Institut Pasteur, Paris, and Hospices Civils de Lyon, Lyon, France), where RNA extraction, real-time RT-PCR, and virus isolation and titration procedures were done. Findings The patients were three men (aged 31 years, 48 years, and 80 years) and two women (aged 30 years and 46 years), all of Chinese origin, who had travelled to France from China around mid-January, 2020. Three different clinical evolutions are described: (1) two paucisymptomatic women diagnosed within a day of exhibiting symptoms, with high nasopharyngeal titres of SARS-CoV-2 within the first 24 h of the illness onset (5·2 and 7·4 log10 copies per 1000 cells, respectively) and viral RNA detection in stools; (2) a two-step disease progression in two young men, with a secondary worsening around 10 days after disease onset despite a decreasing viral load in nasopharyngeal samples; and (3) an 80-year-old man with a rapid evolution towards multiple organ failure and a persistent high viral load in lower and upper respiratory tract with systemic virus dissemination and virus detection in plasma. The 80-year-old patient died on day 14 of illness (Feb 14, 2020); all other patients had recovered and been discharged by Feb 19, 2020. Interpretation We illustrated three different clinical and biological types of evolution in five patients infected with SARS-CoV-2 with detailed and comprehensive viral sampling strategy. We believe that these findings will contribute to a better understanding of the natural history of the disease and will contribute to advances in the implementation of more efficient infection control strategies. Funding REACTing (Research & Action Emerging Infectious Diseases).
                Bookmark

                Author and article information

                Journal
                Lancet Microbe
                Lancet Microbe
                The Lancet. Microbe
                The Author(s). Published by Elsevier Ltd.
                2666-5247
                21 December 2020
                February 2021
                21 December 2020
                : 2
                : 2
                : e60-e69
                Affiliations
                [a ]Malaria: Parasites and Hosts Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
                [b ]Spatial Regulation of Genomes Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France
                [c ]Insect-Virus Interactions Unit, Department of Virology, Institut Pasteur, Paris, France
                [d ]Molecular Genetics of RNA Viruses Unit, Department of Virology, Institut Pasteur, Paris, France
                [e ]Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
                [f ]Structural Virology Unit, Department of Virology and CNRS UMR 3569, Institut Pasteur, Paris, France
                [g ]Epidemiology and Modelling of Bacterial Escape to Antimicrobials Unit, Department of Global Health, Institut Pasteur, Paris, France
                [h ]Epidemiology of Emerging Diseases Unit, Department of Global Health, Institut Pasteur, Paris, France
                [i ]Production and Purification of Recombinant Proteins Technological Platform, Center for Technological Resources and Research, Institut Pasteur, Paris, France
                [j ]ED 393, Sorbonne Université, Paris, France
                [k ]Equipe Mobile d'Infectiologie, APHP Centre-Université de Paris, Paris, France
                [l ]Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Université de Paris, Paris, France
                [m ]Paris-Cardiovascular Research Center, INSERM U970, Paris, France
                [n ]CHU de Strasbourg, Laboratoire de Virologie, Strasbourg, France
                [o ]Université de Strasbourg, INSERM, IRM UMR_S 1109, Strasbourg, France
                [p ]Centre d'Investigation Clinique - INSERM CIC-1434, Strasbourg, France
                [q ]Vaccine Research Institute, Creteil, France
                [r ]Division of Population Health and Immunity, The Walter and Eliza Hall Institute, Melbourne, VIC, Australia
                [s ]Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
                Author notes
                [* ]Correspondence to: Dr Michael White, Malaria: Parasites and Hosts Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris 75015, France
                Article
                S2666-5247(20)30197-X
                10.1016/S2666-5247(20)30197-X
                7837364
                33521709
                1225b25f-d471-472c-94fb-0507700b1cdb
                © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Articles

                Comments

                Comment on this article