23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atomically dispersed metal catalysts for the oxygen reduction reaction, including their synthesis, characterization, reaction mechanisms and electrochemical energy application, are reviewed.

          Abstract

          In recent years, atomically dispersed metal catalysts (ADMCs) with well-defined structures have attracted great interest from researchers for electrocatalytic applications due to their maximum atom utilization efficiency (100%), distinct active sites and high catalytic activity, stability and selectivity. Based on this, this review will comprehensively discuss the recent developments in advanced single-atom and dual-atom ADMCs for the oxygen reduction reaction (ORR), including synthesis and characterization, reaction mechanisms and energy applications such as in fuel cells and metal–air batteries. In addition, challenges will be summarized and analyzed, including the rational design and fabrication of ADMCs and a deeper understanding of their geometric configuration, electronic structure and reaction dynamics towards the ORR. Furthermore, to facilitate further development, future research directions are proposed to overcome associated challenges, such as (1) the exploration of new/advanced materials including metal precursors and supporting substrates for the fabrication of ADMCs; (2) the optimization of rational design and synthesis techniques for single- and dual-atom catalysts to significantly enhance catalytic ORR activity and stability based on modern characterization techniques; (3) a deeper understanding of ADMC structures, reactive active sites, interactions between metal atoms and support surfaces and corresponding electrocatalytic ORR mechanisms at the atomic level using a combination of density functional theory (DFT) calculations and advanced experimental techniques; (4) the optimization of ADMC-based catalyst layers and membrane electrode assemblies to achieve high performance fuel cells and metal–air batteries using advanced electrochemical testing strategies.

          Related collections

          Most cited references282

          • Record: found
          • Abstract: found
          • Article: not found

          Combining theory and experiment in electrocatalysis: Insights into materials design

          Electrocatalysis plays a central role in clean energy conversion, enabling a number of sustainable processes for future technologies. This review discusses design strategies for state-of-the-art heterogeneous electrocatalysts and associated materials for several different electrochemical transformations involving water, hydrogen, and oxygen, using theory as a means to rationalize catalyst performance. By examining the common principles that govern catalysis for different electrochemical reactions, we describe a systematic framework that clarifies trends in catalyzing these reactions, serving as a guide to new catalyst development while highlighting key gaps that need to be addressed. We conclude by extending this framework to emerging clean energy reactions such as hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, where the development of improved catalysts could allow for the sustainable production of a broad range of fuels and chemicals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Opportunities and challenges for a sustainable energy future.

            Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. Solar and water-based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode

                Bookmark

                Author and article information

                Contributors
                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                October 9 2019
                2019
                : 12
                : 10
                : 2890-2923
                Affiliations
                [1 ]Institute for Sustainable Energy/College of Sciences
                [2 ]Shanghai University
                [3 ]Shanghai
                [4 ]China
                [5 ]Energy, Mining & Environment
                [6 ]School of Materials and Mechanic Engineering
                Article
                10.1039/C9EE01722D
                1175b619-83e3-4415-8af6-8eb986bdf304
                © 2019

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article