5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of Drought-Tolerant Transgenic Wheat: Achievements and Limitations

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Crop yield improvement is necessary to keep pace with increasing demand for food. Due to climatic variability, the incidence of drought stress at crop growth stages is becoming a major hindering factor to yield improvement. New techniques are required to increase drought tolerance along with improved yield. Genetic modification for increasing drought tolerance is highly desirable, and genetic engineering for drought tolerance requires the expression of certain stress-related genes. Genes have been identified which confer drought tolerance and improve plant growth and survival in transgenic wheat. However, less research has been conducted for the development of transgenic wheat as compared to rice, maize, and other staple food. Furthermore, enhanced tolerance to drought without any yield penalty is a major task of genetic engineering. In this review, we have focused on the progress in the development of transgenic wheat cultivars for improving drought tolerance and discussed the physiological mechanisms and testing of their tolerance in response to inserted genes under control or field conditions.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global Synthesis of Drought Effects on Maize and Wheat Production

          Drought has been a major cause of agricultural disaster, yet how it affects the vulnerability of maize and wheat production in combination with several co-varying factors (i.e., phenological phases, agro-climatic regions, soil texture) remains unclear. Using a data synthesis approach, this study aims to better characterize the effects of those co-varying factors with drought and to provide critical information on minimizing yield loss. We collected data from peer-reviewed publications between 1980 and 2015 which examined maize and wheat yield responses to drought using field experiments. We performed unweighted analysis using the log response ratio to calculate the bootstrapped confidence limits of yield responses and calculated drought sensitivities with regards to those co-varying factors. Our results showed that yield reduction varied with species, with wheat having lower yield reduction (20.6%) compared to maize (39.3%) at approximately 40% water reduction. Maize was also more sensitive to drought than wheat, particularly during reproductive phase and equally sensitive in the dryland and non-dryland regions. While no yield difference was observed among regions or different soil texture, wheat cultivation in the dryland was more prone to yield loss than in the non-dryland region. Informed by these results, we discuss potential causes and possible approaches that may minimize drought impacts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic engineering and breeding of drought-resistant crops.

            Drought is one of the most important environmental stresses affecting the productivity of most field crops. Elucidation of the complex mechanisms underlying drought resistance in crops will accelerate the development of new varieties with enhanced drought resistance. Here, we provide a brief review on the progress in genetic, genomic, and molecular studies of drought resistance in major crops. Drought resistance is regulated by numerous small-effect loci and hundreds of genes that control various morphological and physiological responses to drought. This review focuses on recent studies of genes that have been well characterized as affecting drought resistance and genes that have been successfully engineered in staple crops. We propose that one significant challenge will be to unravel the complex mechanisms of drought resistance in crops through more intensive and integrative studies in order to find key functional components or machineries that can be used as tools for engineering and breeding drought-resistant crops.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis.

              The interface between plants and the environment plays a dual role as a protective barrier as well as a medium for the exchange of gases, water, and nutrients. The primary aerial plant surfaces are covered by a cuticle, acting as the essential permeability barrier toward the atmosphere. It is a heterogeneous layer composed mainly of lipids, namely cutin and intracuticular wax with epicuticular waxes deposited on the surface. We identified an Arabidopsis thaliana activation tag gain-of-function mutant shine (shn) that displayed a brilliant, shiny green leaf surface with increased cuticular wax compared with the leaves of wild-type plants. The gene responsible for the phenotype encodes one member of a clade of three proteins of undisclosed function, belonging to the plant-specific family of AP2/EREBP transcription factors. Overexpression of all three SHN clade genes conferred a phenotype similar to that of the original shn mutant. Biochemically, such plants were altered in wax composition (very long fatty acid derivatives). Total cuticular wax levels were increased sixfold in shn compared with the wild type, mainly because of a ninefold increase in alkanes that comprised approximately half of the total waxes in the mutant. Chlorophyll leaching assays and fresh weight loss experiments indicated that overexpression of the SHN genes increased cuticle permeability, probably because of changes in its ultrastructure. Likewise, SHN gene overexpression altered leaf and petal epidermal cell structure, trichome number, and branching as well as the stomatal index. Interestingly, SHN overexpressors displayed significant drought tolerance and recovery, probably related to the reduced stomatal density. Expression analysis using promoter-beta-glucuronidase fusions of the SHN genes provides evidence for the role of the SHN clade in plant protective layers, such as those formed during abscission, dehiscence, wounding, tissue strengthening, and the cuticle. We propose that these diverse functions are mediated by regulating metabolism of lipid and/or cell wall components.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                08 July 2019
                July 2019
                : 20
                : 13
                : 3350
                Affiliations
                [1 ]College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
                [2 ]State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
                Author notes
                [* ]Correspondence: gaozhiqiang1964@ 123456163.com ; Tel.: +86-354-6287226
                Article
                ijms-20-03350
                10.3390/ijms20133350
                6651533
                31288392
                1136f03e-16bd-4e5a-8961-fef31ed6d02a
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 June 2019
                : 05 July 2019
                Categories
                Review

                Molecular biology
                genetic modification,triticum aestivum l.,water stress,transcription factors
                Molecular biology
                genetic modification, triticum aestivum l., water stress, transcription factors

                Comments

                Comment on this article