44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Bacterial Exopolysaccharides (EPS) in the Fate of the Oil Released during the Deepwater Horizon Oil Spill

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Halomonas species are recognized for producing exopolysaccharides (EPS) exhibiting amphiphilic properties that allow these macromolecules to interface with hydrophobic substrates, such as hydrocarbons. There remains a paucity of knowledge, however, on the potential of Halomonas EPS to influence the biodegradation of hydrocarbons. In this study, the well-characterized amphiphilic EPS produced by Halomonas species strain TG39 was shown to effectively increase the solubilization of aromatic hydrocarbons and enhance their biodegradation by an indigenous microbial community from oil-contaminated surface waters collected during the active phase of the Deepwater Horizon oil spill. Three Halomonas strains were isolated from the Deepwater Horizon site, all of which produced EPS with excellent emulsifying qualities and shared high (97-100%) 16S rRNA sequence identity with strain TG39 and other EPS-producing Halomonas strains. Analysis of pyrosequence data from surface water samples collected during the spill revealed several distinct Halomonas phylotypes, of which some shared a high sequence identity (≥97%) to strain TG39 and the Gulf spill isolates. Other bacterial groups comprising members with well-characterized EPS-producing qualities, such as Alteromonas, Colwellia and Pseudoalteromonas, were also found enriched in surface waters, suggesting that the total pool of EPS in the Gulf during the spill may have been supplemented by these organisms. Roller bottle incubations with one of the Halomonas isolates from the Deepwater Horizon spill site demonstrated its ability to effectively produce oil aggregates and emulsify the oil. The enrichment of EPS-producing bacteria during the spill coupled with their capacity to produce amphiphilic EPS is likely to have contributed to the ultimate removal of the oil and to the formation of oil aggregates, which were a dominant feature observed in contaminated surface waters.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex.

          We constructed error-correcting DNA barcodes that allow one run of a massively parallel pyrosequencer to process up to 1,544 samples simultaneously. Using these barcodes we processed bacterial 16S rRNA gene sequences representing microbial communities in 286 environmental samples, corrected 92% of sample assignment errors, and thus characterized nearly as many 16S rRNA genes as have been sequenced to date by Sanger sequencing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Propane respiration jump-starts microbial response to a deep oil spill.

            The Deepwater Horizon event resulted in suspension of oil in the Gulf of Mexico water column because the leakage occurred at great depth. The distribution and fate of other abundant hydrocarbon constituents, such as natural gases, are also important in determining the impact of the leakage but are not yet well understood. From 11 to 21 June 2010, we investigated dissolved hydrocarbon gases at depth using chemical and isotopic surveys and on-site biodegradation studies. Propane and ethane were the primary drivers of microbial respiration, accounting for up to 70% of the observed oxygen depletion in fresh plumes. Propane and ethane trapped in the deep water may therefore promote rapid hydrocarbon respiration by low-diversity bacterial blooms, priming bacterial populations for degradation of other hydrocarbons in the aging plume.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill.

              The Deepwater Horizon oil spill resulted in a massive influx of hydrocarbons into the Gulf of Mexico (the Gulf). To better understand the fate of the oil, we enriched and isolated indigenous hydrocarbon-degrading bacteria from deep, uncontaminated waters from the Gulf with oil (Macondo MC252) and dispersant used during the spill (COREXIT 9500). During 20 days of incubation at 5°C, CO(2) evolution, hydrocarbon concentrations and the microbial community composition were determined. Approximately 60% to 25% of the dissolved oil with or without COREXIT, respectively, was degraded, in addition to some hydrocarbons in the COREXIT. FeCl(2) addition initially increased respiration rates, but not the total amount of hydrocarbons degraded. 16S rRNA gene sequencing revealed a succession in the microbial community over time, with an increase in abundance of Colwellia and Oceanospirillales during the incubations. Flocs formed during incubations with oil and/or COREXIT in the absence of FeCl(2) . Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy revealed that the flocs were comprised of oil, carbohydrates and biomass. Colwellia were the dominant bacteria in the flocs. Colwellia sp. strain RC25 was isolated from one of the enrichments and confirmed to rapidly degrade high amounts (approximately 75%) of the MC252 oil at 5°C. Together these data highlight several features that provide Colwellia with the capacity to degrade oil in cold, deep marine habitats, including aggregation together with oil droplets into flocs and hydrocarbon degradation ability. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                27 June 2013
                : 8
                : 6
                : e67717
                Affiliations
                [1 ]Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
                [2 ]School of Life Sciences, Heriot-Watt University, Edinburgh, United Kingdom
                [3 ]Department of Microbial Ecology, Vienna Ecology Centre, Faculty of Sciences, University of Vienna, Vienna, Austria
                [4 ]Department of Marine Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America
                University of California, Merced, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TG. Performed the experiments: TG SM. Analyzed the data: TG DB TY. Contributed reagents/materials/analysis tools: TG LM AT MDA. Wrote the manuscript: TG.

                Article
                PONE-D-13-05184
                10.1371/journal.pone.0067717
                3694863
                23826336
                10696314-3322-458d-9076-530320ca4da8
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 February 2013
                : 21 May 2013
                Funding
                This work was supported by a Marie Curie International Outgoing Fellowship (PIOF-GA-2008-220129) within the 7th European Community Framework Programme. Partial support was also provided through the U.S. National Institute of Environmental Health Sciences grant 5 P42ES005948, and through the BP/Gulf of Mexico Research Initiative to support consortium research entitled “Ecosystem Impacts of Oil and Gas Inputs to the Gulf (ECOGIG)” administered by the University of Mississippi. Andreas Teske, Tony Gutierrez and Luke McKay were also supported by NSF (RAPID Response: The microbial response to the Deepwater Horizon Oil Spill; NSF-OCE 1045115). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article