3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mucormycosis Amid COVID-19 Crisis: Pathogenesis, Diagnosis, and Novel Treatment Strategies to Combat the Spread

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The havoc unleashed by COVID-19 pandemic has paved way for secondary ominous fungal infections like Mucormycosis. It is caused by a class of opportunistic pathogens from the order Mucorales. Fatality rates due to this contagious infection are extremely high. Numerous clinical manifestations result in damage to multiple organs subject to the patient’s underlying condition. Lack of a proper detection method and reliable treatment has made the management of this infection troublesome. Several reports studying the behavior pattern of Mucorales inside the host by modulation of its defense mechanisms have helped in understanding the pathogenesis of this angio-invasive infection. Many recent advances in diagnosis and treatment of this fungal infection have not been much beneficial. Therefore, there is a need to foster more viable strategies. This article summarizes current and imminent approaches that could aid effective management of these secondary infections in these times of global pandemic. It is foreseen that the development of newer antifungal drugs, antimicrobial peptides, and nanotechnology-based approaches for drug delivery would help combat this infection and curb its spread.

          Related collections

          Most cited references208

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemiology and outcome of zygomycosis: a review of 929 reported cases.

            Zygomycosis is an increasingly emerging life-threatening infection. There is no single comprehensive literature review that describes the epidemiology and outcome of this disease. We reviewed reports of zygomycosis in the English-language literature since 1885 and analyzed 929 eligible cases. We included in the database only those cases for which the underlying condition, the pattern of infection, the surgical and antifungal treatments, and survival were described. The mean age of patients was 38.8 years; 65% were male. The prevalence and overall mortality were 36% and 44%, respectively, for diabetes; 19% and 35%, respectively, for no underlying condition; and 17% and 66%, respectively, for malignancy. The most common types of infection were sinus (39%), pulmonary (24%), and cutaneous (19%). Dissemination developed in 23% of cases. Mortality varied with the site of infection: 96% of patients with disseminated disease died, 85% with gastrointestinal infection died, and 76% with pulmonary infection died. The majority of patients with malignancy (92 [60%] of 154) had pulmonary disease, whereas the majority of patients with diabetes (222 [66%] of 337) had sinus disease. Rhinocerebral disease was seen more frequently in patients with diabetes (145 [33%] of 337), compared with patients with malignancy (6 [4%] of 154). Hematogenous dissemination to skin was rare; however, 78 (44%) of 176 cutaneous infections were complicated by deep extension or dissemination. Survival was 3% (8 of 241 patients) for cases that were not treated, 61% (324 of 532) for cases treated with amphotericin B deoxycholate, 57% (51 of 90) for cases treated with surgery alone, and 70% (328 of 470) for cases treated with antifungal therapy and surgery. By multivariate analysis, infection due to Cunninghamella species and disseminated disease were independently associated with increased rates of death (odds ratios, 2.78 and 11.2, respectively). Outcome from zygomycosis varies as a function of the underlying condition, site of infection, and use of antifungal therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Siderophore-based iron acquisition and pathogen control.

              High-affinity iron acquisition is mediated by siderophore-dependent pathways in the majority of pathogenic and nonpathogenic bacteria and fungi. Considerable progress has been made in characterizing and understanding mechanisms of siderophore synthesis, secretion, iron scavenging, and siderophore-delivered iron uptake and its release. The regulation of siderophore pathways reveals multilayer networks at the transcriptional and posttranscriptional levels. Due to the key role of many siderophores during virulence, coevolution led to sophisticated strategies of siderophore neutralization by mammals and (re)utilization by bacterial pathogens. Surprisingly, hosts also developed essential siderophore-based iron delivery and cell conversion pathways, which are of interest for diagnostic and therapeutic studies. In the last decades, natural and synthetic compounds have gained attention as potential therapeutics for iron-dependent treatment of infections and further diseases. Promising results for pathogen inhibition were obtained with various siderophore-antibiotic conjugates acting as "Trojan horse" toxins and siderophore pathway inhibitors. In this article, general aspects of siderophore-mediated iron acquisition, recent findings regarding iron-related pathogen-host interactions, and current strategies for iron-dependent pathogen control will be reviewed. Further concepts including the inhibition of novel siderophore pathway targets are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                04 January 2022
                2021
                04 January 2022
                : 12
                : 794176
                Affiliations
                [1] 1Department of Biophysics, Panjab University , Chandigarh, India
                [2] 2University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh, India
                Author notes

                Edited by: Caterina Guzmán-Verri, National University of Costa Rica, Costa Rica

                Reviewed by: João Nobrega De Almeida Júnior, Universidade de São Paulo, Brazil; Pradeep Kumar Jaiswal, Texas A&M University College Station, United States

                *Correspondence: Akanksha Sharma, aaksgarg@ 123456gmail.com
                Ravi P. Barnwal, barnwal@ 123456pu.ac.in

                These authors have contributed equally to this work and share first authorship

                This article was submitted to Infectious Agents and Disease, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2021.794176
                8763841
                35058909
                0fb449e0-cbce-466a-8946-b8ac4a9ac882
                Copyright © 2022 Dogra, Arora, Aggarwal, Passi, Sharma, Singh and Barnwal.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 October 2021
                : 30 November 2021
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 209, Pages: 27, Words: 22823
                Categories
                Microbiology
                Mini Review

                Microbiology & Virology
                sars-cov-2,mucormycosis,black fungus,amphotericin b,antifungal drugs
                Microbiology & Virology
                sars-cov-2, mucormycosis, black fungus, amphotericin b, antifungal drugs

                Comments

                Comment on this article