13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Soy Isoflavones, Resistant Starch and Antibiotics on Polycystic Ovary Syndrome (PCOS)-Like Features in Letrozole-Treated Rats

      , , , , , , ,
      Nutrients
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive-aged women. Recently, various dietary interventions have been used extensively as a novel therapy against PCOS. In the present study, we show that soy isoflavone metabolites and resistant starch, together with gut microbiota modulations, were successful in decreasing the severity of PCOS-like reproductive features while increasing the expression of gut barrier markers and butyric acid in the gut. In the letrozole-induced PCOS model rats, the intake of both 0.05% soy isoflavones and 11% resistant starch, even with letrozole treatment, reduced the severity of menstrual irregularity and polycystic ovaries with a high concentration of soy isoflavones and equol in plasma. Antibiotic cocktail treatment suppressed soy isoflavone metabolism in the gut and showed no considerable effects on reducing the PCOS-like symptoms. The mRNA expression level of occludin significantly increased with soy isoflavone and resistant starch combined treatment. Bacterial genera such as Blautia, Dorea and Clostridium were positively correlated with menstrual irregularity under resistant starch intake. Moreover, the concentration of butyric acid was elevated by resistant starch intake. In conclusion, we propose that both dietary interventions and gut microbiota modulations could be effectively used in reducing the severity of PCOS reproductive features.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          STAMP: statistical analysis of taxonomic and functional profiles.

          STAMP is a graphical software package that provides statistical hypothesis tests and exploratory plots for analysing taxonomic and functional profiles. It supports tests for comparing pairs of samples or samples organized into two or more treatment groups. Effect sizes and confidence intervals are provided to allow critical assessment of the biological relevancy of test results. A user-friendly graphical interface permits easy exploration of statistical results and generation of publication-quality plots. STAMP is licensed under the GNU GPL. Python source code and binaries are available from our website at: http://kiwi.cs.dal.ca/Software/STAMP. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism

            ABSTRACT The formation of SCFA is the result of a complex interplay between diet and the gut microbiota within the gut lumen environment. The discovery of receptors, across a range of cell and tissue types for which short chain fatty acids SCFA appear to be the natural ligands, has led to increased interest in SCFA as signaling molecules between the gut microbiota and the host. SCFA represent the major carbon flux from the diet through the gut microbiota to the host and evidence is emerging for a regulatory role of SCFA in local, intermediary and peripheral metabolism. However, a lack of well-designed and controlled human studies has hampered our understanding of the significance of SCFA in human metabolic health. This review aims to pull together recent findings on the role of SCFA in human metabolism to highlight the multi-faceted role of SCFA on different metabolic systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice.

              Diabetes and obesity are characterized by a low-grade inflammation whose molecular origin is unknown. We previously determined, first, that metabolic endotoxemia controls the inflammatory tone, body weight gain, and diabetes, and second, that high-fat feeding modulates gut microbiota and the plasma concentration of lipopolysaccharide (LPS), i.e., metabolic endotoxemia. Therefore, it remained to demonstrate whether changes in gut microbiota control the occurrence of metabolic diseases. We changed gut microbiota by means of antibiotic treatment to demonstrate, first, that changes in gut microbiota could be responsible for the control of metabolic endotoxemia, the low-grade inflammation, obesity, and type 2 diabetes and, second, to provide some mechanisms responsible for such effect. We found that changes of gut microbiota induced by an antibiotic treatment reduced metabolic endotoxemia and the cecal content of LPS in both high-fat-fed and ob/ob mice. This effect was correlated with reduced glucose intolerance, body weight gain, fat mass development, lower inflammation, oxidative stress, and macrophage infiltration marker mRNA expression in visceral adipose tissue. Importantly, high-fat feeding strongly increased intestinal permeability and reduced the expression of genes coding for proteins of the tight junctions. Furthermore, the absence of CD14 in ob/ob CD14(-)(/)(-) mutant mice mimicked the metabolic and inflammatory effects of antibiotics. This new finding demonstrates that changes in gut microbiota controls metabolic endotoxemia, inflammation, and associated disorders by a mechanism that could increase intestinal permeability. It would thus be useful to develop strategies for changing gut microbiota to control, intestinal permeability, metabolic endotoxemia, and associated disorders.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NUTRHU
                Nutrients
                Nutrients
                MDPI AG
                2072-6643
                November 2021
                October 24 2021
                : 13
                : 11
                : 3759
                Article
                10.3390/nu13113759
                34836015
                0f9cf494-7704-4d3d-8b1a-1dc9d6736c75
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article