15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Text mining of hypertension researches in the west Asia region: a 12-year trend analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          More than half of the world population lives in Asia and hypertension (HTN) is the most prevalent risk factor found in Asia. There are numerous articles published about HTN in Eastern Mediterranean Region (EMRO) and artificial intelligence (AI) methods can analyze articles and extract top trends in each country. Present analysis uses Latent Dirichlet allocation (LDA) as an algorithm of topic modeling (TM) in text mining, to obtain subjective topic-word distribution from the 2790 studies over the EMRO. The period of checked studied is last 12 years and results of LDA analyses show that HTN researches published in EMRO discuss on changes in BP and the factors affecting it. Among the countries in the region, most of these articles are related to I.R Iran and Egypt, which have an increasing trend from 2017 to 2018 and reached the highest level in 2021. Meanwhile, Iraq and Lebanon have been conducting research since 2010. The EMRO word cloud illustrates ‘BMI’, ‘mortality’, ‘age’, and ‘meal’, which represent important indicators, dangerous outcomes of high BP, and gender of HTN patients in EMRO, respectively.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

          Summary Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12·2 million (95% UI 11·0–13·6) incident cases of stroke, 101 million (93·2–111) prevalent cases of stroke, 143 million (133–153) DALYs due to stroke, and 6·55 million (6·00–7·02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11·6% [10·8–12·2] of total deaths) and the third-leading cause of death and disability combined (5·7% [5·1–6·2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70·0% (67·0–73·0), prevalent strokes increased by 85·0% (83·0–88·0), deaths from stroke increased by 43·0% (31·0–55·0), and DALYs due to stroke increased by 32·0% (22·0–42·0). During the same period, age-standardised rates of stroke incidence decreased by 17·0% (15·0–18·0), mortality decreased by 36·0% (31·0–42·0), prevalence decreased by 6·0% (5·0–7·0), and DALYs decreased by 36·0% (31·0–42·0). However, among people younger than 70 years, prevalence rates increased by 22·0% (21·0–24·0) and incidence rates increased by 15·0% (12·0–18·0). In 2019, the age-standardised stroke-related mortality rate was 3·6 (3·5–3·8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3·7 (3·5–3·9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62·4% of all incident strokes in 2019 (7·63 million [6·57–8·96]), while intracerebral haemorrhage constituted 27·9% (3·41 million [2·97–3·91]) and subarachnoid haemorrhage constituted 9·7% (1·18 million [1·01–1·39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79·6 million [67·7–90·8] DALYs or 55·5% [48·2–62·0] of total stroke DALYs), high body-mass index (34·9 million [22·3–48·6] DALYs or 24·3% [15·7–33·2]), high fasting plasma glucose (28·9 million [19·8–41·5] DALYs or 20·2% [13·8–29·1]), ambient particulate matter pollution (28·7 million [23·4–33·4] DALYs or 20·1% [16·6–23·0]), and smoking (25·3 million [22·6–28·2] DALYs or 17·6% [16·4–19·0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants

            Summary Background Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories. Methods We used data from 1990 to 2019 on people aged 30–79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age. Findings The number of people aged 30–79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306–359) million women and 317 (292–344) million men in 1990 to 626 (584–668) million women and 652 (604–698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55–62) of women and 49% (46–52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43–51) of women and 38% (35–41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20–27) for women and 18% (16–21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including Costa Rica, Taiwan, Kazakhstan, South Africa, Brazil, Chile, Turkey, and Iran. Interpretation Improvements in the detection, treatment, and control of hypertension have varied substantially across countries, with some middle-income countries now outperforming most high-income nations. The dual approach of reducing hypertension prevalence through primary prevention and enhancing its treatment and control is achievable not only in high-income countries but also in low-income and middle-income settings. Funding WHO.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Finding scientific topics.

              A first step in identifying the content of a document is determining which topics that document addresses. We describe a generative model for documents, introduced by Blei, Ng, and Jordan [Blei, D. M., Ng, A. Y. & Jordan, M. I. (2003) J. Machine Learn. Res. 3, 993-1022], in which each document is generated by choosing a distribution over topics and then choosing each word in the document from a topic selected according to this distribution. We then present a Markov chain Monte Carlo algorithm for inference in this model. We use this algorithm to analyze abstracts from PNAS by using Bayesian model selection to establish the number of topics. We show that the extracted topics capture meaningful structure in the data, consistent with the class designations provided by the authors of the articles, and outline further applications of this analysis, including identifying "hot topics" by examining temporal dynamics and tagging abstracts to illustrate semantic content.
                Bookmark

                Author and article information

                Journal
                Ren Fail
                Ren Fail
                Renal Failure
                Taylor & Francis
                0886-022X
                1525-6049
                14 April 2024
                2024
                14 April 2024
                : 46
                : 1
                : 2337285
                Affiliations
                [a ]Faculty Member of the Iranian Ministry of Science, Research and Technology , Tehran, Iran
                [b ]Artificial Intelligence, University of Isfahan , Isfahan, Iran
                [c ]Department of Computer Engineering, Central Tehran Branch, Islamic Azad University , Tehran, Iran
                [d ]Department of Educational Science, Shahid Beheshti University , Tehran, Iran
                [e ]Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences , Tehran, Iran
                [f ]Hasheminejad Kidney Center, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
                [g ]Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University , Tehran, Iran
                [h ]Department of Transportation and Urban Infrastructure Studies, Morgan State University , Baltimore, MD, USA
                Author notes
                CONTACT Rezapour Hassan Harez1@ 123456morgan.edu Department of Transportation and Urban Infrastructure Studies, Morgan State University , Baltimore, MD, USA
                Author information
                https://orcid.org/0000-0001-7255-0261
                https://orcid.org/0000-0001-7805-6344
                https://orcid.org/0000-0002-4703-9741
                https://orcid.org/0000-0002-3683-0490
                https://orcid.org/0000-0003-0590-4650
                https://orcid.org/0000-0002-5269-4740
                https://orcid.org/0000-0003-2292-3175
                https://orcid.org/0000-0001-5722-5938
                Article
                2337285
                10.1080/0886022X.2024.2337285
                11018045
                38616180
                0f869fcf-5fce-45c9-863f-87ff9f49462b
                © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

                History
                Page count
                Figures: 12, Tables: 2, Pages: 14, Words: 6124
                Categories
                Research Article
                Hypertension and Volume Management

                Nephrology
                chronic kidney disease,hypertension,artificial intelligence,text mining,trend detection
                Nephrology
                chronic kidney disease, hypertension, artificial intelligence, text mining, trend detection

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content171

                Cited by3

                Most referenced authors2,029