17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Progress for the Effective Prevention and Treatment of Recurrent Clostridium difficile Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recurrence occurs in approximately 25% of all cases of Clostridium difficile infection (CDI) and poses a unique clinical challenge. Traditionally, treatment options of CDI have been limited to regimes of established antibiotics (eg, pulsed/tapered vancomycin) but faecal transplantation is emerging as a useful alternative. In recent years, promising new strategies have emerged for effective prevention of recurrent CDI (rCDI) including new antimicrobials (eg, fidaxomicin) and monoclonal antibodies (eg, bezlotoxumab). Despite promising progress in this area, obstacles remain for making the best use of these resources due to uncertainty over patient selection. This commentary describes the current epidemiology of rCDI, its clinical impact and risk factors, some of the measures used for treating and preventing rCDI, and some of the emerging treatment options. It then describes some of the obstacles that need to be overcome.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Duodenal infusion of donor feces for recurrent Clostridium difficile.

          Recurrent Clostridium difficile infection is difficult to treat, and failure rates for antibiotic therapy are high. We studied the effect of duodenal infusion of donor feces in patients with recurrent C. difficile infection. We randomly assigned patients to receive one of three therapies: an initial vancomycin regimen (500 mg orally four times per day for 4 days), followed by bowel lavage and subsequent infusion of a solution of donor feces through a nasoduodenal tube; a standard vancomycin regimen (500 mg orally four times per day for 14 days); or a standard vancomycin regimen with bowel lavage. The primary end point was the resolution of diarrhea associated with C. difficile infection without relapse after 10 weeks. The study was stopped after an interim analysis. Of 16 patients in the infusion group, 13 (81%) had resolution of C. difficile-associated diarrhea after the first infusion. The 3 remaining patients received a second infusion with feces from a different donor, with resolution in 2 patients. Resolution of C. difficile infection occurred in 4 of 13 patients (31%) receiving vancomycin alone and in 3 of 13 patients (23%) receiving vancomycin with bowel lavage (P<0.001 for both comparisons with the infusion group). No significant differences in adverse events among the three study groups were observed except for mild diarrhea and abdominal cramping in the infusion group on the infusion day. After donor-feces infusion, patients showed increased fecal bacterial diversity, similar to that in healthy donors, with an increase in Bacteroidetes species and clostridium clusters IV and XIVa and a decrease in Proteobacteria species. The infusion of donor feces was significantly more effective for the treatment of recurrent C. difficile infection than the use of vancomycin. (Funded by the Netherlands Organization for Health Research and Development and the Netherlands Organization for Scientific Research; Netherlands Trial Register number, NTR1177.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial.

            Infection with Clostridium difficile is the primary infective cause of antibiotic-associated diarrhoea. We aimed to compare efficacy and safety of fidaxomicin and vancomycin to treat patients with C difficile infection in Europe, Canada, and the USA. In this multicentre, double-blind, randomised, non-inferiority trial, we enrolled patients from 45 sites in Europe and 41 sites in the USA and Canada between April 19, 2007, and Dec 11, 2009. Eligible patients were aged 16 years or older with acute, toxin-positive C difficile infection. Patients were randomly allocated (1:1) to receive oral fidaxomicin (200 mg every 12 h) or oral vancomycin (125 mg every 6 h) for 10 days. The primary endpoint was clinical cure, defined as resolution of diarrhoea and no further need for treatment. An interactive voice-response system and computer-generated randomisation schedule gave a randomisation number and medication kit number for each patient. Participants and investigators were masked to treatment allocation. Non-inferiority was prespecified with a margin of 10%. Modified intention-to-treat and per-protocol populations were analysed. This study is registered with ClinicalTrials.gov, number NCT00468728. Of 535 patients enrolled, 270 were assigned fidaxomicin and 265 vancomycin. After 26 patients were excluded, 509 were included in the modified intention-to-treat (mITT) population. 198 (91·7%) of 216 patients in the per-protocol population given fidaxomicin achieved clinical cure, compared with 213 (90·6%) of 235 given vancomycin, meeting the criterion for non-inferiority (one-sided 97·5% CI -4·3%). Non-inferiority was also shown for clinical cure in the mITT population, with 221 (87·7%) of 252 patients given fidaxomicin and 223 (86·8%) of 257 given vancomycin cured (one-sided 97·5% CI -4·9%). In most subgroup analyses of the primary endpoint in the mITT population, outcomes in the two treatment groups did not differ significantly; although patients receiving concomitant antibiotics for other infections had a higher cure rate with fidaxomicin (46 [90·2%] of 51) than with vancomycin (33 [73·3%] of 45; p=0·031). Occurrence of treatment-emergent adverse events did not differ between groups. 20 (7·6%) of 264 patients given at least one dose of fidaxomicin and 17 (6·5%) of 260 given vancomycin died. Fidaxomicin could be an alternative treatment for infection with C difficile, with similar efficacy and safety to vancomycin. Optimer Pharmaceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease.

              Antibiotic-associated diarrhea (AAD) is a common complication of most antibiotics and Clostridium difficile disease (CDD), which also is incited by antibiotics, is a leading cause of nosocomial outbreaks of diarrhea and colitis. The use of probiotics for these two related diseases remains controversial. To compare the efficacy of probiotics for the prevention of AAD and the treatment of CDD based on the published randomized, controlled clinical trials. PubMed, Medline, Google Scholar, NIH registry of clinical trials, metaRegister, and Cochrane Central Register of Controlled Trials were searched from 1977 to 2005, unrestricted by language. Secondary searches of reference lists, authors, reviews, commentaries, associated diseases, books, and meeting abstracts. Trials were included in which specific probiotics given to either prevent or treat the diseases of interest. Trials were required to be randomized, controlled, blinded efficacy trials in humans published in peer-reviewed journals. Trials that were excluded were pre-clinical, safety, Phase 1 studies in volunteers, reviews, duplicate reports, trials of unspecified probiotics, trials of prebiotics, not the disease being studied, or inconsistent outcome measures. Thirty-one of 180 screened studies (totally 3,164 subjects) met the inclusion and exclusion criteria. One reviewer identified studies and abstracted data on sample size, population characteristics, treatments, and outcomes. From 25 randomized controlled trials (RCTs), probiotics significantly reduced the relative risk of AAD (RR = 0.43, 95% CI 0.31, 0.58, p < 0.001). From six randomized trials, probiotics had significant efficacy for CDD (RR = 0.59, 95% CI 0.41, 0.85, p = 0.005). A variety of different types of probiotics show promise as effective therapies for these two diseases. Using meta-analyses, three types of probiotics (Saccharomyces boulardii, Lactobacillus rhamnosus GG, and probiotic mixtures) significantly reduced the development of antibiotic-associated diarrhea. Only S. boulardii was effective for CDD.
                Bookmark

                Author and article information

                Journal
                Infect Dis (Auckl)
                Infect Dis (Auckl)
                IDR
                spidr
                Infectious Diseases
                SAGE Publications (Sage UK: London, England )
                1178-6337
                07 March 2018
                2018
                : 11
                : 1178633718758023
                Affiliations
                [1-1178633718758023]Clinical Microbiology & Public Health Laboratory, National Infection Service, Public Health England, Addenbrooke’s Hospital, Cambridge, UK
                Author notes
                [*]David A Enoch, Clinical Microbiology & Public Health Laboratory, National Infection Service, Public Health England, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK. Email: David.enoch@ 123456addenbrookes.nhs.uk
                Article
                10.1177_1178633718758023 IDR-0043911
                10.1177/1178633718758023
                5844436
                0f60a767-db2a-4d49-9f2a-c665637b5926
                © The Author(s) 2018

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 13 November 2017
                : 18 January 2018
                Categories
                Commentary
                Custom metadata
                January-December 2018

                recurrent clostridium difficile infection,risk factors,bezlotoxumab,fidaxomicin,faecal microbiota transplantation

                Comments

                Comment on this article