17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High resolution Spectra of Earth-Like Planets Orbiting Red Giant Host Stars

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the near future we will have ground- and space-based telescopes that are designed to observe and characterize Earth-like planets. While attention is focused on exoplanets orbiting main sequence stars, more than 150 exoplanets have already been detected orbiting red giants, opening the intriguing question of what rocky worlds orbiting in the habitable zone of red giants would be like and how to characterize them. We model reflection and emission spectra of Earth-like planets orbiting in the habitable zone of red giant hosts with surface temperatures between 5200 and 3900 K at the Earth-equivalent distance, as well as model planet spectra throughout the evolution of their hosts. We present a high-resolution spectral database of Earth-like planets orbiting in the red giant habitable zone from the visible to infrared, to assess the feasibility of characterizing atmospheric features including biosignatures for such planets with upcoming ground- and space-based telescopes such as the Extremely Large Telescopes and the James Webb Space Telescope.

          Related collections

          Author and article information

          Journal
          31 December 2019
          Article
          2001.00050
          0e23cfec-81ed-458a-adc8-ec3b26e8522d

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          12 pages, 1 table, 5 figures, submitted to ApJ
          astro-ph.EP astro-ph.SR

          Planetary astrophysics,Solar & Stellar astrophysics
          Planetary astrophysics, Solar & Stellar astrophysics

          Comments

          Comment on this article