16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Edge states and the bulk-boundary correspondence in Dirac Hamiltonians

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present an analytic prescription for computing the edge dispersion E(k) of a tight-binding Dirac Hamiltonian terminated at an abrupt crystalline edge. Specifically, we consider translationally invariant Dirac Hamiltonians with nearest-layer interaction. We present and prove a geometric formula that relates the existence of surface states as well as their energy dispersion to properties of the bulk Hamiltonian. We further prove the bulk-boundary correspondence between the Chern number and the chiral edge modes for quantum Hall systems within the class of Hamiltonians studied in the paper. Our results can be extended to the case of continuum theories which are quadratic in the momentum, as well as other symmetry classes.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Quantum Spin Hall Effect in Graphene

          We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the quantized transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are non chiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder and symmetry breaking fields are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Classification of topological insulators and superconductors in three spatial dimensions

            We systematically study topological phases of insulators and superconductors (SCs) in 3D. We find that there exist 3D topologically non-trivial insulators or SCs in 5 out of 10 symmetry classes introduced by Altland and Zirnbauer within the context of random matrix theory. One of these is the recently introduced Z_2 topological insulator in the symplectic symmetry class. We show there exist precisely 4 more topological insulators. For these systems, all of which are time-reversal (TR) invariant in 3D, the space of insulating ground states satisfying certain discrete symmetry properties is partitioned into topological sectors that are separated by quantum phase transitions. 3 of the above 5 topologically non-trivial phases can be realized as TR invariant SCs, and in these the different topological sectors are characterized by an integer winding number defined in momentum space. When such 3D topological insulators are terminated by a 2D surface, they support a number (which may be an arbitrary non-vanishing even number for singlet pairing) of Dirac fermion (Majorana fermion when spin rotation symmetry is completely broken) surface modes which remain gapless under arbitrary perturbations that preserve the characteristic discrete symmetries. In particular, these surface modes completely evade Anderson localization. These topological phases can be thought of as 3D analogues of well known paired topological phases in 2D such as the chiral p-wave SC. In the corresponding topologically non-trivial and topologically trivial 3D phases, the wavefunctions exhibit markedly distinct behavior. When an electromagnetic U(1) gauge field and fluctuations of the gap functions are included in the dynamics, the SC phases with non-vanishing winding number possess non-trivial topological ground state degeneracies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Topological Insulators in Three Dimensions

              (2007)
              We study three dimensional generalizations of the quantum spin Hall (QSH) effect. Unlike two dimensions, where the QSH effect is distinguished by a single \(Z_2\) topological invariant, in three dimensions there are 4 invariants distinguishing 16 "topological insulator" phases. There are two general classes: weak (WTI) and strong (STI) topological insulators. The WTI states are equivalent to layered 2D QSH states, but are fragile because disorder continuously connects them to band insulators. The STI states are robust and have surface states that realize the 2+1 dimensional parity anomaly without fermion doubling, giving rise to a novel "topological metal" surface phase. We introduce a tight binding model which realizes both the WTI and STI phases, and we discuss the relevance of this model to real three dimensional materials, including bismuth.
                Bookmark

                Author and article information

                Journal
                13 October 2010
                2011-09-14
                Article
                10.1103/PhysRevB.83.125109
                1010.2778
                0def14df-4ba7-499b-80dd-f05e2a80a9f2

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Phys. Rev. B 83, 125109 (2011)
                8 pages + appendices
                cond-mat.mes-hall

                Comments

                Comment on this article